Early in the SARS-CoV-2 pandemic, convalescent plasma (CP) therapy was proposed as a treatment for severely ill patients. We conducted a CP treatment protocol under the Mayo Clinic Extended Access Program at University Hospital Brooklyn (UHB). Potential donors were screened with a lateral flow assay (LFA) for IgM and IgG antibodies against the SARS-CoV-2 S1 receptor-binding domain (RBD). Volunteers that were LFA positive were tested with an ELISA to measure IgG titers against the RBD. Subjects with titers of at least 1:1024 were selected to donate. Most donors with positive LFA had acceptable titers and were eligible to donate. Out of 171 volunteers, only 65 tested positive in the LFA (38.0%), and 55 (32.2%) had titers of at least 1:1024. Before our donation program started, 31 CP units were procured from the New York Blood Center (NYBC). Among the 31 CP units that were obtained from the NYBC, 25 units (80.6%) were positive in the LFA but only 12 units (38.7%) had titers of at least 1:1024. CP was administered to 28 hospitalized COVID-19 patients. Patients who received low titer CP, high titer CP and patients who did not receive CP were followed for 45 days after presentation. Severe adverse events were not associated with CP transfusion. Death was a less frequent outcome for patients that received high titer CP (>1:1024) 38.6% mortality, than patients that received low titer CP (≤1:1024) 77.8% mortality.
More than 3.5 million people have died globally from COVID-19, yet an effective therapy is not available. It is, therefore, important to understand the signaling pathways that mediate disease progression in order to identify new molecular targets for therapeutic development. Here, we report that the blood serum levels of ephrin-A1 and the sheddase ADAM12 were significantly elevated in COVID-19 patients treated at SUNY Downstate Hospital of Brooklyn, New York. Both ephrin-A1 and ADAM12 are known to be involved in inflammation and regulate endothelial cell permeability, thus providing a gateway to lung injury. The clinical outcome correlated with the ephrin-A1 and ADAM12 serum levels during the first week of hospitalization. In contrast, the serum levels of TNFα were elevated in only a small subset of the patients, and these same patients also had highly elevated levels of the sheddase ADAM17. These data indicate that ephrin-A1-mediated inflammatory signaling may contribute to COVID-19 disease progression more so than TNFα-mediated inflammatory signaling. They also support the notion that, in COVID-19 inflammation, ADAM12 sheds ephrin-A1, while ADAM17 sheds TNFα. Furthermore, the results suggest that elevated serum levels and activity of cytokines, such as TNFα, and other secreted inflammatory molecules, such as ephrin-A1, are not simply due to overexpression, but also to upregulation of sheddases that release them into the blood circulation. Our results identify ephrin-A1, ADAM12, and other molecules in the ephrin-A1 signaling pathway as potential pharmacological targets for treating COVID-19 inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.