The COVID-19 pandemic triggered a global health crisis that stimulated journalists to frame their stories around predictive models and forecasts aiming to predict the future trend of the pandemic. This article examines the audience response to predictive journalism by qualitatively analyzing readers’ comments to articles covering COVID that were published in a small sample of mainstream media. Based on a thematic analysis of readers’ comments, this research contributes a typology of audience response types to the models incorporated in such predictive journalism. We elaborate on each of three primary themes—reflecting affective, action-oriented, and evaluative responses—and discuss the implications of our findings and the importance of expanding research to answer questions related to the role of predictive journalism in shaping affective response, encouraging action-oriented responses and collective planning around responsibility for taking future actions, and considering the ways in which supportive and critical comments triggered by the models may be harnessed to improve communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.