In this work, we develop an adaptive, multivariate partitioning algorithm for solving nonconvex, Mixed-Integer Nonlinear Programs (MINLPs) with polynomial functions to global optimality. In particular, we present an iterative algorithm that exploits piecewise, convex relaxation approaches via disjunctive formulations to solve MINLPs that is different than conventional spatial branch-and-bound approaches. The algorithm partitions the domains of variables in an adaptive and non-uniform manner at every iteration to focus on productive areas of the search space. Furthermore, domain reduction techniques based on sequential, optimization-based bound-tightening and piecewise relaxation techniques, as a part of a presolve step, are integrated into the main algorithm. Finally, we demonstrate the effectiveness of the algorithm on well-known benchmark problems (including Pooling and Blending instances) from MINLPLib and compare our algorithm with state-of-the-art global optimization solvers. With our novel approach, we solve several largescale instances, some of which are not solvable by state-of-the-art solvers. We also succeed in reducing the best known optimality gap for a hard, generalized pooling problem instance.
In this work, we propose a two-stage approach to strengthen piecewise Mc-Cormick relaxations for mixed-integer nonlinear programs (MINLP) with multi-linear terms. In the first stage, we exploit Constraint Programing (CP) techniques to contract the variable bounds. In the second stage we partition the variables domains using a dynamic multivariate partitioning scheme. Instead of equally partitioning the domains of variables appearing in multi-linear terms, we construct sparser partitions yet tighter relaxations by iteratively partitioning the variable domains in regions of interest. This approach decouples the number of partitions from the size of the variable domains, leads to a significant reduction in computation time, and limits the number of binary variables that are introduced by the partitioning. We demonstrate the performance of our algorithm on well-known benchmark problems from MINLPLIB and discuss the computational benefits of CP-based bound tightening procedures.
Since the alternating current optimal power flow (ACOPF) problem was introduced in 1962, developing efficient solution algorithms for the problem has been an active field of research. In recent years, there has been increasing interest in convex relaxations-based solution approaches that are often tight in practice. Based on these approaches, we develop tight piecewise convex relaxations with convexhull representations, an adaptive, multivariate partitioning algorithm with bound tightening that progressively improves these relaxations and, given sufficient time, converges to the globally optimal solution. We illustrate the strengths of our algorithm using benchmark ACOPF test cases from the literature. Computational results show that our novel algorithm reduces the best-known optimality gaps for some hard ACOPF cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.