Holy Quran Reader Identification is the process of identifying the reader or reciter of the Holy Quran based on several features in the corresponding acoustic wave. In this research, we build our own corpus, which contains 15 known readers of the Holy Quran. The Mel-Frequency Cepstrum Coefficients (MFCC) are used for the extraction of these features from the input acoustic signal. These MFCCs are the reader's features matrix, which is used for recognition via Support Vector Machine (SVM) and Artificial Neural Networks (ANN). According to our experimental results, the Holy Quran Reader Identification System identifies the reader with 96.59% accuracy when using SVM, in contrast to accuracy of 86.1% when using ANN.
Maintaining the topical coherence while writing a discourse is a major challenge confronting novice and non-novice writers alike. This challenge is even more intense with Arabic discourse because of the complex morphology and the widespread of synonyms in Arabic language. In this research, we present a direct classification of Arabic discourse document while writing. This prescriptive proposed framework consists of the following stages: data collection, pre-processing, construction of Language Model (LM), topics identification, topics classification, and topic notification. To prove and demonstrate our proposed framework, we designed a system and applied it on a corpus of 2800 Arabic discourse documents synthesized into four predefined topics related to: Culture, Economy, Sport, and Religion. System performance was analysed, in terms of accuracy, recall, precision, and F-measure. The results demonstrated that the proposed topic modeling-based decision framework is able to classify topics while writing a discourse with accuracy of 91.0%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.