Recently, many countries have faced serious problems associated with aging civil infrastructures such as bridges, tunnels, dams, highways and so on. Aging infrastructures are increasing year by year and suitable maintenance actions are necessary to maintain their safety and serviceability. In fact, infrastructure deterioration has caused serious problems in the past. In order to prevent accidents with civil infrastructures, supervisors must spend a lot of money to maintain the safe conditions of infrastructures. Therefore, new technologies are required to reduce maintenance costs. In 2014 the Japanese government started the Cross-Ministerial Strategic Innovation Promotion Program (SIP), and technologies for infrastructure maintenance have been studied in the SIP project [1]. Fujitsu Limited, Hokkaido University, The University of Tokyo, Nagoya Institute of Technology and Docon Co. Limited have been engaged in the SIP project to develop a bridge inspection support system using information technology and robotic technology. Our system is divided into the following two main parts: bridge inspection support robots using a two-wheeled multicopter, and an inspection data management system utilizing 3D modeling technology. In this paper, we report the bridge inspection support system developed in our SIP project.
Landing control is one of the important issues for biped walking robot, because robots are expected to walk on not only known flat surfaces but also unknown and uneven terrain for working at various fields. This paper presents a new controller design for a robotic foot to land on unknown terrain. The robotic foot considered in this study equips springs to reduce the impact force at the foot landing. There are two objectives in the landing control; achieving the desired ground reaction force and positioning the foot on unknown terrain. To achieve these two objectives simultaneously by adjusting the foot position, we propose a PI force controller with a desired foot position, which guarantees the robust stability of control system with respect to terrain variance, and exact positioning of the foot to unknown terrain. Simulation results using the Open Dynamics Engine demonstrate the effectiveness of the proposed controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.