The coronavirus disease 2019 (COVID-19) pandemic has influenced the everyday life of people around the globe. In general and during lockdown phases, people worldwide use social media network to state their viewpoints and general feelings concerning the pandemic that has hampered their daily lives. Twitter is one of the most commonly used social media platforms, and it showed a massive increase in tweets related to coronavirus, including positive, negative, and neutral tweets, in a minimal period. The researchers move toward the sentiment analysis and analyze the various emotions of the public toward COVID-19 due to the diverse nature of tweets. Meanwhile, people have expressed their feelings regarding the vaccinations' safety and effectiveness on social networking sites such as Twitter. As an advanced step, in this paper, our proposed approach analyzes COVID-19 by focusing on Twitter users who share their opinions on this social media networking site. The proposed approach analyzes collected tweets' sentiments for sentiment classification using various feature sets and classifiers. The early detection of COVID-19 sentiments from collected tweets allow for a better understanding and handling of the pandemic. Tweets are categorized into positive, negative, and neutral sentiment classes. We evaluate the performance of machine learning (ML) and deep learning (DL) classifiers using evaluation metrics (i.e., accuracy, precision, recall, and F1-score). Experiments prove that the proposed approach provides better accuracy of 96.66, 95.22, 94.33, and 93.88% for COVISenti, COVIDSenti_A, COVIDSenti_B, and COVIDSenti_C, respectively, compared to all other methods used in this study as well as compared to the existing approaches and traditional ML and DL algorithms.
The entire world is suffering from the post-COVID-19 crisis, and governments are facing problems concerning the provision of satisfactory food and services to their citizens through food supply chain systems. During pandemics, it is difficult to handle the demands of consumers, to overcome food production problems due to lockdowns, work with minimum manpower, follow import and export trade policies, and avoid transportation disruptions. This study aims to analyze the behavior of food imports in Saudi Arabia and how this pandemic and its resulting precautionary measures have affected the food supply chain. We performed a statistical analysis and extracted descriptive measures prior to applying hybrid statistical hypothesis tests to study the behavior of the food chain. The paired samples t-test was used to study differences while the independent samples t-test was used to study differences in means at the level of each item and country, followed by the comparison of means test in order to determine the difference and whether it is increasing or decreasing. According to the results, Saudi Arabia experienced significant effects on the number of items shipped and the countries that supplied these items. The paired samples t-test showed a change in the behavior of importing activities by—47% for items and countries. The independent t-test revealed that 24 item groups and 86 countries reflected significant differences in the mean between the two periods. However, the impact on 41 other countries was almost negligible. In addition, the comparison of means test found that 68% of item groups were significantly reduced and 24% were increased, while only 4% of the items remained the same. From a country perspective, 65% of countries showed a noticeable decrease and 16% a significant increase, while 19% remained the same.
Currently, the spread of COVID-19 is running at a constant pace. The current situation is not so alarming, but every pandemic has a history of three waves. Two waves have been seen, and now expecting the third wave. Compartmental models are one of the methods that predict the severity of a pandemic. An enhanced SEIR model is expected to predict the new cases of COVID-19. The proposed model has an additional compartment of vaccination. This proposed model is the SEIRV model that predicts the severity of COVID-19 when the population is vaccinated. The proposed model is simulated with three conditions. The first condition is when social distancing is not incorporated, while the second condition is when social distancing is included. The third one condition is when social distancing is combined when the population is vaccinated. The result shows an epidemic growth rate of about 0.06 per day, and the number of infected people doubles every 10.7 days. Still, with imparting social distancing, the proposed model obtained the value of R0 is 1.3. Vaccination of infants and kids will be considered as future work.
Computed Tomography (CT) scan and Magnetic Resonance Imaging (MRI) technologies are widely used in medical field. Within the last few months, due to the increased use of CT scans, millions of patients have had their CT scans done. So, as a result, images showing the Corona Virus for diagnostic purposes were digitally transmitted over the internet. The major problem for the world health care system is a multitude of attacks that affect copyright protection and other ethical issues as images are transmitted over the internet. As a result, it is important to apply a robust and secure watermarking technique to these images. Notably, watermarking schemes have been developed for various image formats, including .jpg, .bmp, and .png, but their impact on NIfTI (Neuroimaging Informatics Technology Initiative) images is not noteworthy. A watermarking scheme based on the Lifting Wavelet Transform (LWT) and QR factorization is presented in this paper. When LWT and QR are combined, the NIfTI image maintains its inherent sensitivity and mitigates the watermarking scheme's robustness. Multiple watermarks are added to the host image in this approach. Measuring the performance of the graphics card is done by using PSNR, SSIM, Q (a formula which measures image quality), SNR, and Normalized correlation. The watermarking scheme withstands a variety of noise attacks and conversions, including image compression and decompression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.