Recently, several laboratory experiments on vortex dynamics and quasi-two-dimensional turbulence have been performed in thin (stratified) fluid layers. Commonly, it is tacitly assumed that vertical motions, giving rise to a three-dimensional character of the flow, are inhibited by the limited vertical dimension. However, shallow water flows, which are vertically bounded by a no-slip bottom and a free surface, necessarily possess a three-dimensional structure due to the shear in the vertical direction. This shear may lead to significant secondary circulations. In this paper, the three-dimensional (3D) structure and the decay properties of vortices in shallow layers of fluid, both homogeneous and stratified, have been studied in detail by 3D direct numerical simulations. The quasi-two-dimensionality of these flows is an important issue if one is interested in a comparison of experiments of this type with purely two-dimensional theoretical models. The influence of several flow parameters, like the depth of the fluid and the Reynolds number, has been investigated. In general, it can be concluded that the flow loses its two-dimensional character for larger fluid depth and larger Reynolds number. Furthermore, it is possible to construct a regime diagram that allows the assessment of the parameter regime, where the flow can be considered as quasi-two-dimensional. It is found that the presence of secondary circulations within a planar vortex flow results in a deformation of the radial profile of axial vorticity. In the limiting case of quasi-two-dimensional flow, the vorticity profiles can be scaled according to a simple diffusion model. In a two-layer stratified system, the decay is reduced and three-dimensional motions are significantly inhibited compared to the corresponding flows in a homogeneous layer.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.