RHO GTP-binding proteins are important regulators of actin-myosin interactions in uterine smooth muscle cells. Active (GTP-bound) RHOA binds to RHO-associated protein kinase (ROCK1), which inhibits the myosin-binding subunit (PPP1R12A) of myosin light chain phosphatase, leading to calcium-independent increases in myosin light chain phosphorylation and tension, which are termed "calcium sensitization." The RHO effector protein kinase N (PKN1) also increases calcium sensitization by phosphorylating the protein kinase C (PRKCB)-dependent protein CPI-17 (PPP1R14A) to inhibit the PPP1c subunit of myosin phosphatase. Moreover, other RHO proteins, such as RHOB, RHOD, and their effectors (DIAPH1 and DIAPH2), may modulate PKN1/ ROCK1 signaling to effect changes in myosin phosphatase activity and myosin light chain phosphorylation. The increases in contractile activity observed in term and preterm labor may be due to an increase in RHO activity and/or changes in RHO-related proteins. We found that the RHOA and RHOB mRNA levels in the myometrium were increased in pregnancy, although the expression levels of the RHOA and RHOB proteins did not change with pregnancy or labor. GTP-bound RHOA was increased in pregnancy, and this increase was significant in spontaneous preterm labor myometrium. PKN1 expression and PPP1R14A phosphorylation were dramatically increased in the pregnant myometrium. We also observed increases in DIAPH1 expression in spontaneous term and preterm labor myometrial tissues. The present study shows that human pregnancy is characterized by increases in PKN1 expression and PPP1R14A phosphorylation in the myometrium. Moreover, increases in GTP-bound RHOA and DIAPH1 expression may contribute to the increase in uterine activity in idiopathic preterm labor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.