Background Diagnostics in many low- and middle-income countries are conducted through centralized laboratory networks. Samples are collected from patients at remote point-of-care health facilities, and diagnostic tests are performed at centralized laboratories. Sample transportation systems that deliver diagnostic samples and test results are crucial for timely diagnosis and treatment in such diagnostic networks. However, they often lack the timely and accurate data (eg, the quantity and location of samples prepared for collection) required for efficient operation. Objective This study aims to demonstrate the feasibility, adoption, and accuracy of a distributed data collection system that leverages basic mobile phone technology to gather reports on the quantity and location of patient samples and test results prepared for delivery in the diagnostic network of Malawi. Methods We designed a system that leverages unstructured supplementary service data (USSD) technology to enable health workers to submit daily reports describing the quantity of transportation-ready diagnostic samples and test results at specific health care facilities, free of charge with any mobile phone, and aggregate these data for sample transportation administrators. We then conducted a year-long field trial of this system in 51 health facilities serving 3 districts in Malawi. Between July 2019 and July 2020, the participants submitted daily reports containing the number of patient samples or test results designated for viral load, early infant diagnosis, and tuberculosis testing at each facility. We monitored daily participation and compared the submitted USSD reports with program data to assess system feasibility, adoption, and accuracy. Results The participating facilities submitted 37,771 reports over the duration of the field trial. Daily facility participation increased from an average of 50% (26/51) in the first 2 weeks of the trial to approximately 80% (41/51) by the midpoint of the trial and remained at or above 80% (41/51) until the conclusion of the trial. On average, more than 80% of the reports submitted by a facility for a specific type of sample matched the actual number of patient samples collected from that facility by a courier. Conclusions Our findings suggest that a USSD-based system is a feasible, adoptable, and accurate solution to the challenges of untimely, inaccurate, or incomplete data in diagnostic networks. Certain design characteristics of our system, such as the use of USSD, and implementation characteristics, such as the supportive role of the field team, were necessary to ensure high participation and accuracy rates without any explicit financial incentives.
Problem definition: Healthcare systems in resource-limited settings rely on diagnostic networks in which medical samples (e.g., blood, sputum) and results need to be transported between geographically dispersed healthcare facilities and centralized laboratories. Academic/practical relevance: Existing sample transportation (ST) systems typically operate fixed schedules, which do not account for demand variability and lead to unnecessary transportation visits as well as delays. Methodology: We design an optimized sample transportation (OST) system that comprises two components: (i) a new approach for timely collection of information on transportation demand (samples and results) using low-cost technology based on feature phones, and (ii) an optimization-based solution approach to the problem of routing and scheduling courier trips in a multistage transportation system. Results: Our solution approach performs well in a range of numerical experiments. Furthermore, we implement OST in collaboration with Riders For Health, who operate the national ST system in Malawi. Based on analysis of field data describing over 20,000 samples and results transported during July–October 2019, we show that the implementation of OST routes reduced average ST delays in three districts of Malawi by approximately 25%. In addition, the proportion of unnecessary trips by ST couriers decreased by 55%. Managerial implications: Our approach for improving ST operations is feasible and effective in Malawi and can be applied to other resource-limited settings, particularly in sub-Saharan Africa. Funding: This work was supported by Bill and Melinda Gates Foundation [Grant OPP1182217] and by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health [Grant U54EB027049]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding organizations. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.1182 .
BACKGROUND Diagnostics in many low- and middle-income countries are conducted through centralized laboratory networks. Samples are collected from patients at remote point-of-care health facilities, and diagnostic tests are performed at centralized laboratories. Sample transportation systems that deliver diagnostic samples and test results are crucial for timely diagnosis and treatment in such diagnostic networks. However, they often lack the timely and accurate data (eg, the quantity and location of samples prepared for collection) required for efficient operation. OBJECTIVE This study aims to demonstrate the feasibility, adoption, and accuracy of a distributed data collection system that leverages basic mobile phone technology to gather reports on the quantity and location of patient samples and test results prepared for delivery in the diagnostic network of Malawi. METHODS We designed a system that leverages unstructured supplementary service data (USSD) technology to enable health workers to submit daily reports describing the quantity of transportation-ready diagnostic samples and test results at specific health care facilities, free of charge with any mobile phone, and aggregate these data for sample transportation administrators. We then conducted a year-long field trial of this system in 51 health facilities serving 3 districts in Malawi. Between July 2019 and July 2020, the participants submitted daily reports containing the number of patient samples or test results designated for viral load, early infant diagnosis, and tuberculosis testing at each facility. We monitored daily participation and compared the submitted USSD reports with program data to assess system feasibility, adoption, and accuracy. RESULTS The participating facilities submitted 37,771 reports over the duration of the field trial. Daily facility participation increased from an average of 50% (26/51) in the first 2 weeks of the trial to approximately 80% (41/51) by the midpoint of the trial and remained at or above 80% (41/51) until the conclusion of the trial. On average, more than 80% of the reports submitted by a facility for a specific type of sample matched the actual number of patient samples collected from that facility by a courier. CONCLUSIONS Our findings suggest that a USSD-based system is a feasible, adoptable, and accurate solution to the challenges of untimely, inaccurate, or incomplete data in diagnostic networks. Certain design characteristics of our system, such as the use of USSD, and implementation characteristics, such as the supportive role of the field team, were necessary to ensure high participation and accuracy rates without any explicit financial incentives.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.