Conventional vehicles, having internal combustion engines, use lead-acid batteries (LABs) for starting, lighting, and ignition purposes. However, because of new additional features (i.e., enhanced electronics and start/stop functionalities) in these vehicles, LABs undergo deep discharges due to frequent engine cranking, which in turn affect their lifespan. Therefore, this research study seeks to improve LABs’ performance in terms of meeting the required vehicle cold cranking current (CCC) and long lifespan. The performance improvement is achieved by hybridizing a lead-acid with a lithium-ion battery at a pack level using a fully active topology approach. This topology approach connects the individual energy storage systems to their bidirectional DC-DC converter for ease of control. Besides, a battery management strategy based on fuzzy logic and a triple-loop proportional-integral (PI) controller is implemented for these conversion systems to ensure effective current sharing between lead-acid and lithium-ion batteries. A fuzzy logic controller provides a percentage reference current needed from the battery and regulates the batteries’ state-of-charge (SoC) within the desired limits. A triple-loop controller monitors and limits the hybridized system’s current sharing and voltage within the required range during cycling. The hybridized system is developed and validated using Matlab/Simulink. The battery packs are developed using the battery manufacturers’ data sheets. The results of the research, compared with a single LAB, show that by controlling the current flow and maintaining the SoC within the desired limits, the hybrid energy storage system can meet the desired vehicle cold cranking current at a reduced weight. Furthermore, the lead-acid battery lifespan based on a fatigue cycle-model is improved from two years to 8.5 years, thus improving its performance in terms of long lifespan.
High peak current for vehicle starting, recuperation of regenerative braking energy, longer battery lifespan, and more significant acceleration among others in modern transport vehicles (TVs) require increased battery size. Moreover, batteries have high energy density and low power density. Therefore, a big battery pack can weigh more, shorten its lifespan, increase vehicle total mass, and increase battery degradation costs. On the one hand, higher power energy storage systems (ESSs) such as supercapacitors, lithium-ion capacitors, and superconducting magnetic ESSs have a lower energy density, higher power density, and greater lifespan. Thus, to satisfy the requirements of modern TVs, the combination of higher energy and higher power density can provide enhanced performance and a longer battery lifespan for these vehicles. Available research publications in the literature have addressed a similar problem. However, these publications have reported the findings separately, providing various research and conclusions.Currently, no available literature has compiled an intelligible and combined analysis for addressing hybrid ESS configurations, sizing methods, and energy management strategies to create further knowledge in this domain. There is a need to consolidate a compact and insightful knowledge toward this research direction for a more significant societal and industrial impact. This paper critically reviews the hybrid higher energy density batteries and higher power density ESSs used in TVs. It discusses the integration configurations, applications, and provides sizing methods to achieve the best hybrid energy storage systems (HESSs). Also, applied control methods are described for these HESSs such that the overall system performance matches the vehicle requirements. Lastly, it provides insights and future research direction for HESS configuration, sizing, and control.
Modern vehicles have increased functioning necessities, including more energy/power, storage for recovering decelerating energy, start/stop criteria, etc. However, lead-acid batteries (LABs) possess a shorter lifetime than lithium-ion and supercapacitors energy storage systems. The use of LABs harms the operation of transport vehicles. Therefore, this research paper pursues to improve the operating performance of LABs in association with their lifetime. Integrated LAB and supercapacitor improve the battery lifetime and efficiently provide for transport vehicles’ operational requirements and implementation. The study adopts an active-parallel topology approach to hybridise LAB and supercapacitor. A fully active-parallel topology structure comprises two DC-to-DC conversion systems. LAB and supercapacitor are connected as inputs to these converters to allow effective and easy control of energy and power. A cascaded proportional integrate-derivative (PID) controller regulates the DC-to-DC converters to manage the charge/release of combined energy storage systems. The PID controls energy share between energy storage systems, hence assisting in enhancing LAB lifetime. The study presents two case studies, including the sole battery application using different capacities, and the second, by combining a battery with a supercapacitor of varying capacity sizes. A simulation software tool, Matlab/Simulink, is used to develop the model and validate the results of the system. The simulation outcomes show that the battery alone cannot serve the typical transport vehicle (TV) requirements. The battery and output voltage of the DC-to-DC conversion systems stabilises at 12 V, which ensures consistent DC bus link voltage. The energy storage (battery) state-of-charge (SoC) is reserved in the range of 90% to 96%, thus increasing its lifespan by 8200 cycles. The battery is kept at the desired voltage to supply all connected loads on the DC bus at rated device voltage. The fully active topology model for hybrid LAB and supercapacitor provides a complete degree of control for individual energy sources, thus allowing the energy storage systems to operate as they prefer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.