Abstract:-Multirate technique is necessary for systems with different input and output sampling rates. Recent advances in mobile computing and communication applications demand low power and high speed VLSI DSP systems [4]. This Paper presents Multirate modules used for filtering to provide signal processing in wireless communication system. Many architecture developed for the design of low complexity, bit parallel Multiple Constant Multiplications operation which dominates the complexity of DSP systems. However, major drawbacks of present approaches are either too costly or not efficient enough. On the other hand, MCM and digit-serial adder offer alternative low complexity designs, since digit-serial architecture occupy less area and are independent of the data word length [1] [10]. Multiple Constant Multiplications is efficient way to reduce the number of addition and subtraction in polyphase filter implementation. This Multirate design methodology is systematic and applicable to many problems. In this paper, attention has given to the MCM & digit serial architecture with shifting and adding techniques that offers alternative low complexity in operations. This paper also focused on Multirate Signal Processing Modules using Voltage and Technology scaling. Reduction of power consumption is important for VLSI system and also it becomes one of the most critical design parameter. Transistorized Multirate module which has full custom design with different circuit topology and optimization level simulated on cadence platform. Multirate modules are used AMI 0.6 um, TSMC 0.35 um, and TSMC 0.25 um technologies for different voltage scaling. The presented methodology provides a systematic way to derive circuit technique for high speed operation at a low supply voltage. Multirate polyphase interpolator and decimator are also designed and optimized at architectural level in order to analyze the terms power consumption, area and speed.
In this paper, different type of level shifter circuits, that can able to convert the sub-threshold level to super-threshold level signals are discussed. To develop the ultra- low static power consumption circuit designs such a way to switch on the transistor for a low voltage levels. To enhance the switching speed and minimize the dynamic power consumption, by incorporating the CMOS –inverter buffer circuit at the output side to improve the energy efficiently. These energy harvesting design techniques provides endless energy supply to electronic systems that are remotely located areas. More number of devices are controlled by IoT (Internet of Things) to perform the operation by remote sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.