Hypoxia-inducible factor (HIF) is a transcriptional complex that plays a central role in the regulation of gene expression by oxygen. In oxygenated and iron replete cells, HIF-alpha subunits are rapidly destroyed by a mechanism that involves ubiquitylation by the von Hippel-Lindau tumor suppressor (pVHL) E3 ligase complex. This process is suppressed by hypoxia and iron chelation, allowing transcriptional activation. Here we show that the interaction between human pVHL and a specific domain of the HIF-1alpha subunit is regulated through hydroxylation of a proline residue (HIF-1alpha P564) by an enzyme we have termed HIF-alpha prolyl-hydroxylase (HIF-PH). An absolute requirement for dioxygen as a cosubstrate and iron as cofactor suggests that HIF-PH functions directly as a cellular oxygen sensor.
HIF is a transcriptional complex that plays a central role in mammalian oxygen homeostasis. Recent studies have defined posttranslational modification by prolyl hydroxylation as a key regulatory event that targets HIF-alpha subunits for proteasomal destruction via the von Hippel-Lindau ubiquitylation complex. Here, we define a conserved HIF-VHL-prolyl hydroxylase pathway in C. elegans, and use a genetic approach to identify EGL-9 as a dioxygenase that regulates HIF by prolyl hydroxylation. In mammalian cells, we show that the HIF-prolyl hydroxylases are represented by a series of isoforms bearing a conserved 2-histidine-1-carboxylate iron coordination motif at the catalytic site. Direct modulation of recombinant enzyme activity by graded hypoxia, iron chelation, and cobaltous ions mirrors the characteristics of HIF induction in vivo, fulfilling requirements for these enzymes being oxygen sensors that regulate HIF.
We describe a general and rapid route for the addition of unnatural amino acids to the genetic code of Saccharomyces cerevisiae. Five amino acids have been incorporated into proteins efficiently and with high fidelity in response to the nonsense codon TAG. The side chains of these amino acids contain a keto group, which can be uniquely modified in vitro and in vivo with a wide range of chemical probes and reagents; a heavy atom-containing amino acid for structural studies; and photocrosslinkers for cellular studies of protein interactions. This methodology not only removes the constraints imposed by the genetic code on our ability to manipulate protein structure and function in yeast, it provides a gateway to the systematic expansion of the genetic codes of multicellular eukaryotes.
Using a novel genetic selection, we have identified a series of mutants of the E. coli tyrosyl-tRNA synthetase that selectively charge an amber suppressor tRNA with p-(propargyloxy)phenylalanine and p-azidophenylalanine in yeast. These evolved tRNA-synthetase pairs can be used to site-specifically label proteins with functional groups orthogonal to normal biological chemistries. As an example, we have shown that proteins containing these amino acids can be efficiently bioconjugated with small organic molecules by a [3 + 2] cycloaddition reaction that is mild enough for the manipulation of biological samples.
Protein tyrosine phosphorylation cascades are difficult to analyze and are critical for cell signaling in higher eukaryotes. Methodology for profiling tyrosine phosphorylation, considered herein as the assignment of multiple protein tyrosine phosphorylation sites in single analyses, was reported recently (Salomon, A. R.; Ficarro, S. B.; Brill, L. M.; Brinker, A.; Phung, Q. T.; Ericson, C.; Sauer, K.; Brock, A.; Horn, D. M.; Schultz, P. G.; Peters, E. C. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 443-448). The technology platform included the use of immunoprecipitation, immobilized metal affinity chromatography (IMAC), liquid chromatography, and tandem mass spectrometry. In the present report, we show that when using complex mixtures of peptides from human cells, methylation improved the selectivity of IMAC for phosphopeptides and eliminated the acidic bias that occurred with unmethylated peptides. The IMAC procedure was significantly improved by desalting methylated peptides, followed by gradient elution of the peptides to a larger IMAC column. These improvements resulted in assignment of approximately 3-fold more tyrosine phosphorylation sites, from human cell lysates, than the previous methodology. Nearly 70 tyrosine-phosphorylated peptides from proteins in human T cells were assigned in single analyses. These proteins had unknown functions or were associated with a plethora of fundamental cellular processes. This robust technology platform should be broadly applicable to profiling the dynamics of tyrosine phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.