Objective
The aim of this study was to generate synthetic electronic health records (EHRs). The generated EHR data will be more realistic than those generated using the existing medical Generative Adversarial Network (medGAN) method.
Materials and Methods
We modified medGAN to obtain two synthetic data generation models—designated as medical Wasserstein GAN with gradient penalty (medWGAN) and medical boundary-seeking GAN (medBGAN)—and compared the results obtained using the three models. We used 2 databases: MIMIC-III and National Health Insurance Research Database (NHIRD), Taiwan. First, we trained the models and generated synthetic EHRs by using these three 3 models. We then analyzed and compared the models’ performance by using a few statistical methods (Kolmogorov–Smirnov test, dimension-wise probability for binary data, and dimension-wise average count for count data) and 2 machine learning tasks (association rule mining and prediction).
Results
We conducted a comprehensive analysis and found our models were adequately efficient for generating synthetic EHR data. The proposed models outperformed medGAN in all cases, and among the 3 models, boundary-seeking GAN (medBGAN) performed the best.
Discussion
To generate realistic synthetic EHR data, the proposed models will be effective in the medical industry and related research from the viewpoint of providing better services. Moreover, they will eliminate barriers including limited access to EHR data and thus accelerate research on medical informatics.
Conclusion
The proposed models can adequately learn the data distribution of real EHRs and efficiently generate realistic synthetic EHRs. The results show the superiority of our models over the existing model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.