Despite the fact that the estrogenic effects of bisphenols were first described 80 years ago, recent data about its potential negative impact on birth outcome parameters raises a strong rationale to investigate further. The adverse health effects of plastics recommend to measure the impacts of endocrine-disrupting compounds (EDCs) such as bisphenols (BPA, BPS, BPF), bis(2-ethylhexyl) phthalate, and dibutyl phthalate (DBP) in human health. Exposure to these compounds in utero may program the diseases of the testis, prostate, kidney and abnormalities in the immune system, and cause tumors, uterine hemorrhage during pregnancy and polycystic ovary. These compounds also control the processes of epigenetic transgenerational inheritance of adult-onset diseases by modulating DNA methylation and epimutations in reproductive cells. The early developmental stage is the most susceptible window for developmental and genomic programming. The critical stages of the events for a normal human birth lie between the many transitions occurring between spermatogenesis, egg fertilization and the fully formed fetus. As the cells begin to grow and differentiate, there are critical balances of hormones, and protein synthesis. Data are emerging on how these plastic-derived compounds affect embryogenesis, placentation and feto-placental development since pregnant women and unborn fetuses are often exposed to these factors during preconception and throughout gestation. Impaired early development that ultimately influences fetal outcomes is at the center of many developmental disorders and contributes an independent risk factor for adult chronic diseases. This review will summarize the current status on the impact of exposure to plastic derived
Testicular germ cell tumour (TGCT) is the most common cancer in young men in large parts of the world, but the aetiology is mainly unknown. Genome-wide association studies have so far identified about 50 susceptibility loci associated with TGCT, including SPRY4. SPRY4 has shown tumour suppressor activity in several cancer cells, such as lung and prostate, while it was found to act as an oncogene in ovarian cancer. An intronic region within the SPRY4 gene produces a long non-coding RNA, SPRY4-IT1, which has been reported to act as an oncogene in melanoma, breast cancer, and colorectal cancer, and as a tumour suppressor in lung cancer. The roles of SPRY4 and SPRY4-IT1 in TGCT development are yet unknown. We found higher expression levels of SPRY4, both mRNA and protein, and of SPRY4-IT1 in human TGCT than in normal adult testis. Small-interfering RNA (siRNA)-mediated transient knockdown of SPRY4 and SPRY4-IT1 in two TGCT cell lines 833 K and NT2-D1 resulted in decreased cell growth, migration, and invasion. Knockdown of SPRY4 and SPRY4-IT1 also led to a significant reduction in the phosphorylation of Akt. Our findings indicate that SPRY4 and SPRY4-IT1 may act as oncogenes in TGCTs via activation of the PI3K / Akt signalling pathway.
Testicular germ cell tumour (TGCT) represents the most common malignancy in young men in large parts of the world, but the aetiology is yet unclear. Multiple TGCT susceptibility loci have been identified, and we have shown that one of these,
SPRY4
, may act as a TGCT oncogene. Furthermore, many of the loci are in non-coding regions of the genome. miRNAs, a class of non-coding RNAs may play a crucial role in cell proliferation, differentiation, and apoptosis, and alteration in their expression may lead to oncogenesis. Differential expression of miRNAs in TGCT and normal testis has been reported in previous studies. In this study, we used qPCR to analyse, in normal and malignant testis tissue, the expression of the ten miRNAs that we had previously identified by sequencing to be the most upregulated in TGCT. We found high expression of these miRNAs also by qPCR analysis. The levels of
miR-302a-3p
,
miR-302b-3p
, and
miR-302c-3p
were downregulated after treatment of the TGCT cell lines NT2-D1 and 833 K with the chemotherapy drug cisplatin. By using miRNA inhibitor-mediated transient transfection, we inhibited the expression of the three members of miR-302 family (miR-302s). Inhibition of miR-302s resulted in a decreased cell proliferation in NT2-D1 cells, but not in 833 K cells. In both cell lines, inhibition of miR-302s resulted in decreased expression of SPRY4, which we have previously shown to regulate MAPK/ERK and PI3K/Akt signalling pathways in these cells. Inhibition of miR-302b-3p and miR-302c-3p decreased phosphorylation of ERK1/2, whereas inhibition of miR-302a-3p and miR-302b-3p led to decreased expression of the apoptosis inhibitor, survivin. Our findings suggest that miR-302s act as TGCT oncogenes by inducing the expression of SPRY4 and activating MAPK/ERK pathway while inhibiting apoptosis via increased survivin expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.