Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang and Smith (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition.
Species tree inference from gene trees is an important part of biological research. One confounding factor in estimating species trees is gene duplication and loss which can lead to gene trees with multiple copies of the same gene. In recent years there have been several new methods developed to address this problem that have substantially improved on earlier methods; however, the best performing methods (ASTRAL- Pro, ASTRID-multi, and FastMulRFS) have not yet been directly compared. In this study, we compare ASTRAL-Pro, ASTRID-multi, and FastMulRFS under a wide variety of conditions. Our study shows that while all three have very good accuracy, nearly the same under many conditions, ASTRAL-Pro and ASTRID-multi are more reliably accurate than FastMuLRFS, and that ASTRID-multi is often faster than ASTRAL-Pro. The datasets generated for this study are freely available in the Illinois Data Bank at https://databank.illinois.edu/datasets/IDB-2418574
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.