Blue solution of copper(II) acetylacetonate complex, [Cu(acac)(2)] in dichloromethane (DCM) and an aqueous alkaline solution of thioacetamide (TAA) constitute a biphasic system. The system in a screw cap test tube under a modified hydrothermal (MHT) reaction condition produces a greenish black solid at the liquid-liquid interface. It has been characterized that the solid mass is an assembly of hexagonal copper sulfide (CuS) nanoplates representing a hierarchical structure. The as-synthesized CuS nanoplates are well characterized by several physical techniques. An ethanolic dispersion of CuS presents a high band gap energy (2.2 eV) which assists visible light photocatalytic mineralization of different dye molecules. Thus a cleanup measure of dye contaminated water body even under indoor light comes true.
Adsorption of dopamine (DA) on a Au core -Ag shell bimetallic nanocolloidal surface has been investigated using surface-enhanced Raman spectroscopy (SERS). The normal Raman spectra (NRS) of DA molecules in bulk and in aqueous solution have been investigated in depth. The vibrational signatures, as observed from the Raman and FTIR spectra of the molecule, have been assigned from the potential energy distributions. The pH-dependent NRS of the DA molecule in aqueous solution has been recorded to elucidate the protonation effect and preferential existence of different forms of the molecule. The pH-dependent SERS spectra of the molecule adsorbed on the bimetallic Au core -Ag shell nanocolloidal surface are also reported. The enhancement of bands in the pH-dependent SERS spectra suggests that the molecules are adsorbed onto the bimetallic Au core -Ag shell surface with the molecular plane tilted with respect to the silver surface of Au core -Ag shell bimetallic nanoparticles. The model study authenticates the spectral disposition and orientation of the molecule. Thus, experiment and theory keep abreast of the variety of DA structures envisaged from SERS studies on a new substrate.
A nonpolar surfactant assisted mild wet chemistry approach has been presented for controlled fabrication of ferromagnetic ultralong (several micrometers in length) prickly nickel nanowires in gram scale with the assistance of hydrazine hydrate as the reducing agent and nickel chloride as the metal ion precursor. Nanowire structures analogous to the natural plant Euphorbia milii resulted due to the magnetic dipole driven self-assembly, and their alignment was oriented desirably with an external magnetic field. Systematic microscopic characterizations identified the nanowire to be pure fcc-Ni (i.e., face-centered cubic Ni) without any signature of contamination, though X-ray photoelectron spectroscopy (XPS) and magnetization measurements refer to the existence of an ultrathin nickel oxide (NiO) layer over the nanostructures. The as-synthesized nanowires were used as a singlesource precursor for the evolution of nanometric black NiO when calcined. Again, the Ni nanowires act as a sacrificial template that addresses deposition of metallic gold over the nanowire with variable structural hierarchy through their quantitative oxidative dissolution. Then, the composite material serves as a heterogeneous catalyst for reduction of 4-nitrophenol, and a probable reaction mechanism has been suggested. Additionally, the materials were proved to furnish a full-proof enhanced field effect for prolific surface-enhanced Raman scattering (SERS) activity. In a nutshell, the strategy provides a new horizon to design need-based functional material with much practical implication.
Formation of ZnO/CuS heterostructure through a simple wet-chemical method leads to a type-II semiconductor. The heterojunction between these two moieties leads to the separation of electron–hole pairs, which further enhances the photocatalytic efficiency of ZnO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.