We have investigated the structural and magnetic properties of polycrystalline Cu‐substituted cobalt ferrite (CuxCo1−xFe2O4: x = 0.00, 0.15, 0.30, 0.45, 0.60) nanoparticles, synthesized via chemical coprecipitation method. The prepared samples were of single phase as confirmed by X‐ray diffraction analysis. The mean crystallite size ranged from 44 to 65 nm was obtained using Scherrer's formula. M‐T curves revealed that the Curie temperature of all the samples was above room temperature and it was found to decrease with increasing Cu concentration, which was supported by Mössbauer spectra. Field cooled (FC) hysteresis curves showed ferrimagnetic nature at 5 K and room temperature. It was observed that careful variation of Cu concentration in cobalt ferrite lead to weak A‐B interaction with tunable magnetic properties.
Sm3+ doped spinel cobalt ferrite nanoparticles with a generic formula CoSmxFe2−xO4 (x = 0.00, 0.06, 0.12 and 0.18) were prepared using wet chemical co-precipitation technique. The structural, optical, magnetic and dielectric characteristics of the samples were investigated carefully. The phase purity and growth of spinel cubic structure was verified by room temperature x-ray diffractograms. Mean crystallite size was observed within the range of 6 nm to 15 nm as calculated from Scherrer’s formula. A blue shift in the indirect optical band gap was noticed with increasing Sm percentage as observed in UV–vis spectra due to the nanosize effect. Superparamagnetic nature at 300 K was detected for all Sm doped ferrite samples. Field cooled (150 kOe) M-H loops obtained at 5 K revealed a large amount of exchange bias field (≈4 kOe) together with high coercivity for the sample having smallest sized particles. Dielectric responses of all samples showed that the hopping of electrons was the fundamental charge conduction mechanism and grain boundaries play a crucial role in determining the dielectric properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.