<span>In the recent years, face recognition across aging has become very popular and challenging task in the area of face recognition. Many researchers have contributed in this area, but still there is a significant gap to fill in. Selection of feature extraction and classification algorithms plays an important role in this area. Deep Learning with Convolutional Neural Networks provides us a combination of feature extraction and classification in a single structure. In this paper, we have presented a novel idea of 7-Layer CNN architecture for solving the problem of aging for recognizing facial images across aging. We have done extensive experimentations to test the performance of the proposed system using two standard datasets FGNET and MORPH</span><span>(Album II). Rank-1 recognition accuracy of our proposed system is 76.6% on FGNET and 92.5% on MORPH</span><span>(Album II). Experimental results show the significant improvement over available state-of- the-arts with the proposed CNN architecture and the classifier.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.