Charcot-Marie-Tooth (CMT) disease is one of the most common genetically inherited neurological disorders and CMT type 2A (CMT 2A) is caused by dominant mutations in the mitofusin-2 (MFN2) gene. MFN2 is located in the outer mitochondrial membrane and is a mediator of mitochondrial fusion, with an essential role in maintaining normal neuronal functions. Although loss of MFN2 induces axonal neuropathy, the detailed mechanism by which MFN2 deficiency results in axonal degeneration of human spinal motor neurons remains largely unknown. In this study, we generated MFN2-knockdown human embryonic stem cell (hESC) lines using lentivirus expressing MFN2 short hairpin RNA (shRNA). Using these hESC lines, we found that MFN2 loss did not affect spinal motor neuron differentiation from hESCs but resulted in mitochondrial fragmentation and dysfunction as determined by live-cell imaging. Notably, MFN2-knockodwn spinal motor neurons exhibited CMT2A disease-related phenotypes, including extensive perikaryal inclusions of phosphorylated neurofilament heavy chain (pNfH), frequent axonal swellings, and increased pNfH levels in long-term cultures. Importantly, MFN2 deficit impaired anterograde and retrograde mitochondrial transport within axons, and reduced the mRNA and protein levels of kinesin and dynein, indicating the interfered motor protein expression induced by MFN2 deficiency. Our results reveal that MFN2 knockdown induced axonal degeneration of spinal motor neurons and defects in mitochondrial morphology and function. The impaired mitochondrial transport in MFN2-knockdown spinal motor neurons is mediated, at least partially, by the altered motor proteins, providing potential therapeutic targets for rescuing axonal degeneration of spinal motor neurons in CMT2A disease.
Current cell and gene therapy medicines for oncology have reshaped how cancer is treated. Chimeric antigen receptor (CAR)-T cells have demonstrated that cell therapy can achieve durable remissions in hematologic malignancies. CAR-T cell therapies, however, have limited efficacy in solid tumors and are associated with severe toxicity, highlighting the need for safer and more efficacious novel cell therapies. With their intrinsic tumor killing capacity, few treatment-related toxicities, and the ability to be given to patients off-the shelf, natural killer (NK) cells are an attractive alternative therapy option to CAR-T cells. While most NK cell therapies are produced from healthy donor cells, deriving NK cells from induced pluripotent stem cells (iPSCs) has the unique advantage that a clone with any desired edits can be generated. We aim to leverage our iPSC platform in combination with our proprietary gene editing technologies to create highly differentiated off-the-shelf treatments for solid tumors. Using our proprietary engineered AsCas12a, we generated double knocked-in (DKI) iPSC clones in which a bicistronic cargo encoding CD16 and a membrane-bound IL-15 (mbIL-15) was knocked into the GAPDH locus to increase the effector function and persistence of iNKs. Constitutive surface expression of CD16 and mbIL-15 by the DKI iNKs was demonstrated. DKI iNKs showed significantly increased natural and antibody dependent cellular cytotoxicity when compared to wild type (WT) iNKs in a SKOV3 tumor spheroid assay in vitro. Furthermore, in the absence of exogeneous cytokines, DKI iNKs persistence in vitro was dramatically improved over WT iNKs. The anti-tumor efficacy of the DKI iNKs in vivo was evaluated using a SKOV3 ovarian cancer model. Tumor bearing mice were treated with WT or DKI iNKs intraperitoneally in combination with trastuzumab or treated with trastuzumab alone. No exogenous cytokines were administered. DKI iNKs combined with a single dose or multiple doses of trastuzumab exerted greater tumor control compared to WT iNKs with trastuzumab, or trastuzumab alone. A single dose of DKI iNKs combined with three doses of trastuzumab induced tumor clearance in 6 out of 8 mice and significantly prolonged survival. Importantly, DKI iNKs were detected in the peritoneum of the treated animals for greater than 3 months, demonstrating that the mbIL-15 maintained iNK survival for a prolonged period of time in the absence of exogeneous cytokine support. In summary, knocking-in CD16 and mbIL-15 to the GAPDH locus of iPSCs dramatically increased the persistence of the DKI iNKs which exhibited robust anti-tumor activities in a solid tumor mouse model. These data demonstrate that our platform enables the development of off-the-shelf iNK cell medicines that may be highly effective for treating solid tumors. Citation Format: Alexander G. Allen, Samia Q. Khan, Kaitlyn M. Izzo, Mrunali Jagdale, Alexandra Gerew, Nadire R. Cochran, Jared Getgano, Stephen Sherman, Laura Blaha, Mark Shearman, Kate Zhang, Kai-Hsin Chang. AsCas12a gene-edited iPSC-derived NK cells constitutively expressing CD16 and membrane-bound IL-15 demonstrate prolonged persistence and robust anti-tumor activities in a solid tumor mouse model [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 562.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.