Abstract. The purpose of this study was to evaluate the effect of formulation components on the in vitro skin permeation of microemulsion drug delivery system containing fluconazole (FLZ). Lauryl alcohol (LA) was screened as the oil phase of microemulsions. The pseudo-ternary phase diagrams for microemulsion regions were constructed using LA as the oil, Labrasol (Lab) as the surfactant and ethanol (EtOH) as the cosurfactant. The formulation which showed a highest permeation rate of 47.15± 1.12 µg cm −2 h −1 and appropriate physicochemical properties was optimized as containing 2% FLZ, 10%LA, 20% Lab/EtOH (1:1), and 68% double-distilled water (w/w). The efficiency of microemulsion formulation in the topical delivery of FLZ was dependent upon the contents of water and LA as well as Lab/EtOH mixing ratio. It was concluded that the percutaneous absorption of FLZ from microemulsions was enhanced with increasing the LA and water contents, and with decreasing the Lab/EtOH ratio in the formulation. Candida albicans was used as a model fungus to evaluate the antifungal activity of the best formula achieved, which showed the widest zone of inhibition as compared to FLZ reference. The studied microemulsion formulation showed a good stability for a period of 3 months. These results indicate that the studied microemulsion formulation might be a promising vehicle for topical delivery of FLZ.
The purpose of this study was to evaluate the effect of oil, surfactant/co-surfactant mixing ratios and water on the in vitro permeation of ketoconazole (KTZ) applied in O/W microemulsion vehicle through intact rat skin. Lauryl Alcohol (LA) was screened as the oil phase of microemulsions, due to a good solubilizing capacity of the microemulsion system. The pseudo-ternary phase diagrams for microemulsion regions were constructed using LA as the oil, Labrasol (Lab) as the surfactant (S) and ethanol (EtOH) as the cosurfactant (CoS). The formulation which showed a highest permeation rate of 54.65 ± 1.72 µg/cm(2)/h(1) and appropriate physico-chemical properties was optimized as containing 2% KTZ, 10% LA, 20% Lab/EtOH (1:1) and 68% double distilled water (w/w). The efficiency of microemulsion formulation in the topical delivery of KTZ was dependent upon the contents of water and LA as well as Lab/EtOH mixing ratio. It was concluded that the percutaneous absorption of KTZ from microemulsions was enhanced with increasing the LA and water contents, and with decreasing the Lab/EtOH ratio in the formulation. Candida albicans was used as a model fungus to evaluate the antifungal activity of the best formula achieved, which showed the widest zone of inhibition as compared to KTZ reference. The studied microemulsion formulation showed a good stability for a period of three months. Histopathological investigation of rat skin revealed the safety of microemulsion formulations for topical use. These results indicate that the studied microemulsion formulation might be a promising vehicle for topical delivery of KTZ.
The objective of this study was to develop and evaluate a novel microemulsion based gel formulation containing tazarotene for targeted topical therapy of acne. Psudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant, and co-surfactant for microemulsion formation. The optimized microemulsion formulation containing 0.05% tazarotene was formulated by spontaneous microemulsification method consisting of 10% Labrafac CC, mixed emulsifiers 15% Labrasol-Cremophor-RH 40 (1:1), 15% Capmul MCM, and 60% distilled water (w/w) as an external phase. All plain and tazarotene-loaded microemulsions were clear and showed physicochemical parameters for desired topical delivery and stability. The permeation profiles of tazarotene through rat skin from optimized microemulsion formulation followed the Higuchi model for controlled permeation. Microemulsion-based gel was prepared by incorporating Carbopol®971P NF in optimized microemulsion formulation having suitable skin permeation rate and skin uptake. Microemulsion-based gel showed desired physicochemical parameters and demonstrated advantage over marketed formulation in improving the skin tolerability of tazarotene indicating its potential in improving its topical delivery. The developed microemulsion-based gel may be a potential drug delivery vehicle for targeted topical delivery of tazarotene in the treatment of acne.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.