Cloud computing has enabled entirely new business models for high-performance computing. It is a dedicated local highperformance computer is still an option for some, but more are turning to cloud computing resources to fulfil their high-performance computing needs. With cloud computing it is possible to tailor your computing infrastructure to perform best for your particular type of workload by selecting the correct number of machines of each type. This paper presents an efficient algorithm to find the best set of computing resources to allocate to the workload. This research is applicable to users provisioning cloud computing resources and to datacenter owners making purchasing decisions about physical hardware. Studies have shown that cloud computing machines have measurable variability in their performance. Some of the causes of performance variability include small changes in architecture, location within the datacenter, and neighboring applications consuming shared network resources. The proposed algorithm models the uncertainty in the computing resources and the variability in the tasks in a many-task computing environment to find a robust number of machines of each type necessary to process the workload. In addition, reward rate, cost, failure rate, and power consumption can be optimized, as desired, to compute Pareto fronts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.