Systolic time interval (STI) estimation is an established noninvasive method for the quantifiable assessment of left ventricular (LV) performance in well-being and disease states; it stays valuable for clinical application and forms no burden to the subjects. This manuscript reviews the potential clinical applications and prognostic value of STI for the assessment of LV systolic function in cardiovascular disease (CVD). STIs could be obtained by several noninvasive imaging modalities such as transthoracic echocardiography, tissue Doppler imaging M-mode echocardiography, conventional echocardiography, and so on. In view of that, a literature review for studies reporting the clinical applications of STI in assessing LV systolic function among CVD patients was carried out using PubMed search. Accordingly, the current review describes how STI can be measured; reliability of cardiac time interval measurement in patients with CVD and its role in a clinical setting. With the advent of modern techniques, STI could be easily measured in a clinical setting. Likewise, STI parameter, particularly preejection period and LV ejection time ratio (PEP/LVET), has got the highest degree of correlation with LV ejection fraction (LVEF) in assessing LV performance. Furthermore, reproducibility of systolic ejection time (SET) achieved by the TDI M-mode method is outstanding and better when compared with the reproducibility of SET obtained by the conventional pulsed Doppler method. Furthermore, prolonged SET is independently related with enhanced outcomes among heart failure with reduced EF (HFrEF, i.e., EF ≤40%) but not HF with preserved EF (HFpEF, i.e., EF >40%) patients, indicating that stabilizing SET would be helpful in the case of systolic dysfunction. Clinically, tissue Doppler-derived time intervals could be beneficial to analyze abnormal cases in comparison with other invasive and noninvasive methods of ventricular function examination. Furthermore, phonoelectrocardiography-derived STI parameters, particularly electromechanical activation time-to-LVET ratio, may have a significant role in the diagnostic approach of heart failure (HF) in patients with undifferentiated dyspnea. In addition, in HF patients, PEP/LVET of >0.43 helps to detect LVEF <35% by pulsed Doppler echocardiography. Moreover, LVET continues to be an independent predictor of incident HF and provides incremental prognostic value on the future HF risk and death but not myocardial infarction. In conclusion, STI measurement could be useful, particularly in identifying LVEF <35% in the case of refractory HF patients. This could be beneficial in the selection of patients requiring cardiac resynchronization, specifically when accurate LVEF evaluation by echocardiography proves challenging in atrial fibrillation or if the evaluation is done by a trainee echocardiographer. Furthermore, the cardiac time intervals including SET can be acquired irrespective of rhythm. Good image quality is required for the assessment of LVEF. In contrast, evaluation of SET could be useful in the case of echocardiograms with poor quality images. As a final point, the present review suggests using an echocardiographic parameter like STIs to procure additional information regarding the risk of mortality in patients with HFrEF along with LVEF measurement.
Introduction: Left ventricular (LV) systolic function evaluation is based on ejection fraction assessment. Due to the great sensitivity of the examination and the ease of measurement, systolic time intervals (STIs) are ideally appropriate for studying the effects of pharmacologic agents upon the heart. In this context, the present study aimed to estimate and compare STI in patients with ischemic heart disease (IHD) with clinical heart failure and among control subjects without clinically established LV dysfunction based on their LV ejection fraction (LVEF). Materials and Methods: This case–control study included 33 IHD patients as cases and 32 healthy subjects as controls. All subjects underwent pulsed-Doppler echocardiogram to estimate STIs: total electromechanical systole (QS2), preejection period (PEP), and LV ejection time (LVET). Results: A significant difference between PEP (145.23 ± 23.20 vs. 82.99 ± 8.63, P < 0.00001), LVET (231.34 ± 40.89 vs. 265.39 ± 31.98, P = 0.000947), and PEP/LVET ratio (0.63 ± 0.15 vs. 0.31 ± 0.08, P < 0.00001) between cases and controls was found. On subgroup analysis, a weak correlation was found in patients with LVEF ≤40% and PEP/LVET (r = −0.3677, P = 0.1958). In addition, a relatively strong correlation between LVET and heart rate (r = −0.432, P = 0.012) was found among the cases. Conclusion: The current study results showed that the differences in the values of STI among cases than in controls could be an indicator of LV systolic dysfunction. In addition, this method may have impending applications in the management of IHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.