Medical imaging and analysis plays a crucial role in diagnosis and treatment planning. The anatomical complexity of human brain makes the process of imaging and analyzing very difficult. In spite of huge advancements in medical imaging procedures, accurate segmentation and classification of brain abnormalities remains a challenging and daunting task. This challenge is more visible in the case of brain tumors because of different possible shapes of tumors, locations and image intensities of different types of tumors. In this paper we have presented a method for automated segmentation of brain tumors from magnetic resonance images. An enhanced and modified Gaussian mixture mode model and the independent component analysis segmentation approach has been employed for segmenting brain tumors in magnetic resonance images. The results of segmentation are validated with the help of segmentation evaluation parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.