Antimicrobials are a type of agent widely used to prevent various microbial infections in humans and animals. Antimicrobial resistance is a major cause of clinical antimicrobial therapy failure, and it has become a major public health concern around the world. Increasing the development of multiple antimicrobials has become available for humans and animals with no appropriate guidance. As a result, inappropriate use of antimicrobials has significantly produced antimicrobial resistance. However, an increasing number of infections such as sepsis are untreatable due to this antimicrobial resistance. In either case, life-saving drugs are rendered ineffective in most cases. The actual causes of antimicrobial resistance are complex and versatile. A lack of adequate health services, unoptimized use of antimicrobials in humans and animals, poor water and sanitation systems, wide gaps in access and research and development in healthcare technologies, and environmental pollution have vital impacts on antimicrobial resistance. This current review will highlight the natural history and basics of the development of antimicrobials, the relationship between antimicrobial use in humans and antimicrobial use in animals, the simplistic pathways, and mechanisms of antimicrobial resistance, and how to control the spread of this resistance.
Cancer is commonly thought to be the product of irregular cell division. According to the World Health Organization (WHO), cancer is the major cause of death globally. Nature offers an abundant supply of bioactive compounds with high therapeutic efficacy. Anticancer effects have been studied in a variety of phytochemicals found in nature. When Food and Drug Administration (FDA)-approved anticancer drugs are combined with natural compounds, the effectiveness improves. Several agents have already progressed to clinical trials based on these promising results of natural compounds against various cancer forms. Natural compounds prevent cancer cell proliferation, development, and metastasis by inducing cell cycle arrest, activating intrinsic and extrinsic apoptosis pathways, generating reactive oxygen species (ROS), and down-regulating activated signaling pathways. These natural chemicals are known to affect numerous important cellular signaling pathways, such as NF-B, MAPK, Wnt, Notch, Akt, p53, AR, ER, and many others, to cause cell death signals and induce apoptosis in pre-cancerous or cancer cells without harming normal cells. As a result, non-toxic “natural drugs” taken from nature’s bounty could be effective for the prevention of tumor progression and/or therapy of human malignancies, either alone or in combination with conventional treatments. Natural compounds have also been shown in preclinical studies to improve the sensitivity of resistant cancers to currently available chemotherapy agents. To summarize, preclinical and clinical findings against cancer indicate that natural-sourced compounds have promising anticancer efficacy. The vital purpose of these studies is to target cellular signaling pathways in cancer by natural compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.