Conventional multilevel inverter topologies like neutral point clamped (NPC), flying capacitor (FC), and cascade H bridge (CHB) are employed in the industry but require a large number of switches and passive and active components for the generation of a higher number of voltage levels. Consequently, the cost and complexity of the inverter increases. In this work, the basic unit of a switched capacitor topology was generalized utilizing a cascaded H-bridge structure for realizing a switched-capacitor multilevel inverter (SCMLI). The proposed generalized MLI can generate a significant number of output voltage levels with a lower number of components. The operation of symmetric and asymmetric configurations was shown with 13 and 31 level output voltage generation, respectively. Self-capacitor voltage balancing and boosting capability are the key features of the proposed SCMLI structure. The nearest level control modulation scheme was employed for controlling and regulating the output voltage. Based on the longest discharging time, the optimum value of capacitance was also calculated. A generalized formula for the generation of higher voltage levels was also derived. The proposed model was simulated in the MATLAB®/Simulink 2016a environment. Simulation results were validated with the hardware implementation.
The apparent advantages of Multilevel Inverter (MLI) topologies in handling medium and high power with less loss in switching and lower harmonic distortion in an output voltage waveform makes it better than the conventional inverter. However, the MLI topologies utilize a large number of DC power supplies and power semiconductor devices. They also have a higher value of total standing voltage (TSV). Moreover, capacitor voltage balancing problems, self-voltage boosting inability, and complex control techniques require a relook and improvement in their structure. More recently, Switched-Capacitor Multilevel Inverter (SCMLI) topologies have been proposed to overcome the shortcomings of MLIs. In this paper, a generalized structure for a single-phase switched capacitor multilevel inverter (SCMLI) with self-voltage boosting and self-voltage balancing capability is proposed. A detailed analysis of a general structure of SCMLI is presented. The comparative analysis of the structures is carried out with recently reported topologies to demonstrate superiority. An optimized low-frequency modulation controls the output voltage waveform. The simulation and experimental results are included in the paper for single-unit symmetric (9-level voltage) and asymmetric (17-level voltage) configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.