Measurements of polarized fluorescence and CD were made on light-harvesting complex 1 and a subunit form of this complex from Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodobacter capsulatus. The subunit form of LH1, characterized by a near-infrared absorbance band at approximately 820 nm, was obtained by titration of carotenoid-depleted LH1 complexes with the detergent n-octyl beta-D-glucopyranoside as reported by Miller et al. (1987) [Miller J. F., Hinchigeri, S. B., Parkes-Loach, P. S., Callahan, P. M., Sprinkle, J. R., & Loach, P. A. (1987) Biochemistry 26, 5055-5062]. Fluorescence polarization and CD measurements at 77 K suggest that this subunit form must consist of an interacting bacteriochlorophyll a dimer in all three bacterial species. A small, local decrease in the polarization of the fluorescence is observed upon excitation at the blue side of the absorption band of the B820 subunit. This decrease is ascribed to the presence of a high-energy exciton component, perpendicular to the main low-energy exciton component. From the extent of the depolarization, we estimate the oscillator strength of the high-energy component to be at most 3% of the main absorption band. The optical properties of B820 are best explained by a Bchl a dimer that has a parallel or antiparallel configuration with an angle between the Qy transition dipoles not larger than 33 degrees. The importance of this structure is emphasized by the results showing that core antennas from three different purple bacteria have a similar structure.(ABSTRACT TRUNCATED AT 250 WORDS)
Symmetric molecular motors based
on two overcrowded alkenes with
a notable absence of a stereogenic center show potential to function
as novel mechanical systems in the development of more advanced nanomachines
offering controlled motion over surfaces. Elucidation of the key parameters
and limitations of these third-generation motors is essential for
the design of optimized molecular machines based on light-driven rotary
motion. Herein we demonstrate the thermal and photochemical rotational
behavior of a series of third-generation light-driven molecular motors.
The steric hindrance of the core unit exerted upon the rotors proved
pivotal in controlling the speed of rotation, where a smaller size
results in lower barriers. The presence of a pseudo-asymmetric carbon
center provides the motor with unidirectionality. Tuning of the steric
effects of the substituents at the bridgehead allows for the precise
control of the direction of disrotary motion, illustrated by the design
of two motors which show opposite rotation with respect to a methyl
substituent. A third-generation molecular motor with the potential
to be the fastest based on overcrowded alkenes to date was used to
visualize the equal rate of rotation of both its rotor units. The
autonomous rotational behavior perfectly followed the predicted model,
setting the stage for more advanced motors for functional dynamic
systems.
The spectroscopic properties of the light-harvesting complex of Rhodospirillum rubrum, B873, and a detergent-isolated subunit form, B820, are presented. Absorption and circular dichroism spectra suggest excitonically interacting bacteriochlorophyll alpha (BChl alpha) molecules give B820 its unique spectroscopic properties. Resonance Raman results indicate that BCHl alpha is 5-coordinate in both B820 and B873 but that the interactions with the BChl C2 acetyl in B820 and B873 are different. The reactivity of BChl alpha in B820 in light and oxygen, or NaBH4, suggests that it is exposed to detergent and the aqueous environment. Excited-state lifetimes of the completely dissociated 777-nm-absorbing form [1.98 ns in 4.5% octyl glucoside (OG)], the intermediate subunit B820 (0.72 ns in 0.8% OG), and the in vivo like reassociated B873 (0.39 ns in 0.3% OG) were measured by single-photon counting. The fluorescence decays were exponential when emission was detected at wavelengths longer than 864 nm. An in vivo like B873 complex, as judged by its spectroscopic properties, can be formed from B820 without the presence of a reaction center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.