Recently Hořava proposed a renormalizable gravity theory with higher derivatives by abandoning the Lorentz invariance in UV. Here, I construct the Hořava model at λ = 1/3, where a local anisotropic Weyl symmetry exists in the UV limit, in addition to the foliation-preserving diffeomorphism. By considering linear perturbations around Minkowski vacuum for the non-projectable version of the Hořava model, I show that the scalar graviton mode is completely disappeared and only the usual tensor graviton modes remain in the physical spectrum. The existence of the UV conformal symmetry is unique to the theory with the detailed balance and this may explain the importance of the detailed balance condition in quantum gravity.
Recently Hořava proposed a renormalizable quantum gravity, without the ghost problem, by abandoning Einstein's equal-footing treatment of space and time through the anisotropic scaling dimensions. Since then various interesting aspects, including the exact black hole solutions have been studied but no rotating black hole solutions have been found yet, except some limiting cases. In order to fill the gap, I consider a simpler three-dimensional set-up with z = 2 and obtain the exact rotating black hole solution. This solution has a ring curvature singularity inside the outer horizon, like the four-dimensional Kerr black hole in Einstein gravity, as well as a curvature singularity at the origin. The usual mass bound works also here but in a modified form. Moreover, it is shown that the conventional first law of thermodynamics with the usual Hawking temperature and chemical potential does not work, which seems to be the genuine effect of Lorentz-violating gravity due to lack of the absolute horizon.
We consider an extension of the Hořava-Lifshitz gravity with extra conformal symmetry by introducing a scalar field with higher order curvature terms. Relaxing the exact local Weyl symmetry, we construct an action with three free parameters which breaks local anisotropic Weyl symmetry but still preserves residual global Weyl symmetry. At low energies, it reduces to a Lorentz-violating scalar-tensor gravity. With a constant scalar field background and particular choices of the parameters, it reduces to the Hořava-Lifshitz (HL) gravity, but any perturbation from these particular configurations produces some non-trivial extensions of HL gravity. The perturbation analysis of the new extended HL gravity in the Minkowski background shows that the pathological behaviors of scalar graviton, i.e., ghost or instability problem, and strong coupling problem do not emerge up to cubic order as well as quadratic order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.