The structural parameters of fluid phase bilayers composed of phosphatidylcholines with fully saturated, mixed, and branched fatty acid chains, at several temperatures, have been determined by simultaneously analyzing small-angle neutron and X-ray scattering data. Bilayer parameters, such as area per lipid and overall bilayer thickness have been obtained in conjunction with intrabilayer structural parameters (e.g. hydrocarbon region thickness). The results have allowed us to assess the effect of temperature and hydrocarbon chain composition on bilayer structure. For example, we found that for all lipids there is, not surprisingly, an increase in fatty acid chain trans-gauche isomerization with increasing temperature. Moreover, this increase in trans-gauche isomerization scales with fatty acid chain length in mixed chain lipids. However, in the case of lipids with saturated fatty acid chains, trans-gauche isomerization is increasingly tempered by attractive chain-chain van der Waals interactions with increasing chain length. Finally, our results confirm a strong dependence of lipid chain dynamics as a function of double bond position along fatty acid chains.
The structural phase behavior of phospholipid mixtures consisting of short-chain (dihexanoyl phosphatidylcholine) and long-chain lipids (dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylglycerol), with and without lanthanide ions was investigated by small-angle neutron scattering (SANS). SANS profiles were obtained from 10 degrees C to 55 degrees C using lipid concentrations ranging from 0.0025 g/ml to 0.25 g/ml. The results reveal a wealth of distinct morphologies, including lamellae, multi-lamellar vesicles, unilamellar vesicles, and bicellar disks.
We have studied the phase behavior of binary mixtures of long- and short-chain lipids, namely, dimyristoyl phosphatidylcholine (DMPC) and dihexanoyl phosphatidylcholine (DHPC), using optical microscopy and small-angle neutron scattering. Samples with a total lipid content of 25 wt %, corresponding to ratios Q ([DMPC]/[DHPC]) of 5, 3.2, and 2, are found to exhibit an isotropic (I) --> chiral nematic (N) --> lamellar phase sequence on increasing temperature. The I-N transition coincides with the chain melting transition of DMPC at Q = 5 and 3.2, but the N phase forms at a higher temperature for Q = 2. All three samples form multilamellar vesicles in the lamellar phase. Our results show that disklike "bicellar" aggregates occur only in the lower temperature isotropic phase and not in the higher temperature magnetically alignable N phase, where they were previously believed to exist. The N phase is found to consist of long, flexible wormlike micelles, their entanglement resulting in the very high viscosity of this phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.