We investigated the mechanism of phenotypic plasticity of hepatocytes in a three-dimensional organoid culture system, in which hepatocytic spheroids were embedded within a collagen gel matrix. Hepatocytes expressed several bile duct markers including cytokeratin (CK) 19 soon after culture and underwent branching morphogenesis within the matrix in the presence of insulin and epidermal growth factor. Cultured hepatocytes did not express Delta-like, a specific marker for oval cells and hepatoblasts. Furthermore, hepatocytes isolated from c-kit mutant rats (Ws/Ws), which are defective in proliferation of oval cells, showed essentially the same phenotypic changes as those isolated from control rats. The bile duct-like differentiation of hepatocytes was associated with increased expression of Jagged1, Jagged2, Notch1, and several Notch target genes. CK19 expression and branching morphogenesis were inhibited by dexamethasone, a mitogen-activated protein kinase kinase 1 (MEK1) inhibitor (PD98059), and a phosphatidyl inositol 3-kinase inhibitor (LY294002). After being cultured for more than 3 weeks within the gels, hepatocytes transformed into ductular structures surrounded by basement membranes. Our results suggest that hepatocytes might have the potential to transdifferentiate into bile duct-like cells without acquiring a stem-like phenotype and that this is mediated through specific protein tyrosine phosphorylation pathways.
Bone remodeling in response to force requires the coordinated action of osteoblasts, osteoclasts, osteocytes, and periodontal ligament cells. Coordination among these cells may be mediated, in part, by cell-to-cell communication via gap junctions. This study tests the hypothesis that the regulation of expression of connexin 43, a gap junction protein, is part of the transduction mechanism between force as applied to bone during orthodontic tooth movement and bone remodeling. To test this hypothesis, we examined connexin 433 expression in a rat model system of experimental tooth movement. To establish the model, we extracted maxillary first molars to initiate supra-eruption of opposing mandibular molars. The rats were killed at 0, 6, 12, 24, and 48 hrs post-extraction. The mandibles were removed, demineralized, and embedded in paraffin. To localize connexin 43 protein and mRNA, we used a specific antibody for immunohistochemistry and a specific cDNA probe for in situ hybridization. Western and Northern blot analyses were used to assess the specificity of the connexin 43 antibody and cDNA probe, respectively. We found connexin 43 protein expressed by osteoclasts (++ ++) and periodontal ligament cells (++ +) in compression zones, and by osteoblasts (++ ++) and osteocytes (++ ++) in tension zones of the periodontal ligament. In addition, connexin 43 mRNA was found in some bone and periodontal ligament cells. Connexin 43 protein was found, by densitometric analysis, to be higher in the periodontal ligament after exposure to force compared with controls (P < 0.001). The number of osteocytes expressing connexin 43 48 hrs after molar extraction was also significantly greater in bone subjected to tension when compared with controls (P < 0.001). The results of this study support the hypothesis that connexin 43 plays a role in the coordination of events during experimentally induced alveolar bone remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.