Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. The Nrf2/HO-1 pathway is a critical endogenous antioxidant stress pathway, but its precise role in radiation-induced enteritis remains to be clarified. Polysaccharides extracted from Rheum tanguticum (RTP) can protect the intestinal cells from radiation-induced damage, but the underlying mechanism is unknown. SD rats and IEC-6 cells were exposed to 12 or 10 Gy X-ray radiation. Rat survival, and histopathological and immunohistochemical profiles were analyzed at different time points. Indicators of oxidative stress and inflammatory response were also assessed. Cell viability, apoptosis and Nrf2/HO-1 expression were evaluated at multiple time points. Significant changes were observed in the physiological and biochemical indexes of rats after radiation, accompanied by significant oxidative stress response. The mRNA and protein expression of Nrf2 peaked at 12 h after irradiation, and HO-1 expression peaked at 48 h after irradiation. RTP administration reduced radiation-induced intestinal damage, upregulated Nrf2/HO-1, improved physiological indexes, significantly decreased apoptosis and inflammatory factors, and upregulated HO-1, particularly at 48 h after irradiation. In conclusion, Nrf2 is activated in the early stage of radiation-induced intestinal injury and plays a protective role. RTP significantly ameliorates radiation-induced intestinal injury via the regulation of Nrf2 and its downstream protein HO-1.
Chronic sleep loss caused lots of health problems, also including cognition impairment. Tea is one of the most popular drinks when people stay up late. Nevertheless, the effects of tea on sleep deprivation-induced cognition impairment are still unclear. In the present study, we found 24-h sleep deprivation (S-DEP) increased membrane α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate (AMPA) receptor level through a tumor necrosis factor α (TNFα)-dependent pathway in hippocampi. Blocking elevated TNFα level can protect S-DEP mice from impaired learning ability according to behavioral test. Tea polyphenols, major active compounds in green tea, suppressed TNFα production through downregulating TNFα converting enzyme (TACE) level. Meanwhile, tea polyphenols treatment could ameliorate recognition impairment and anxiety-like behaviors in S-DEP mice. The aforementioned results demonstrate cognition protective effects of tea polyphenols in S-DEP mice model, which provide a theoretical basis for the treatments of S-DEP-induced cognition impairment by targeting the TACE/TNFα/AMPA pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.