Supplementary data are available at Bioinformatics online.
Background Bioinformatic workflows frequently make use of automated genome assembly and protein clustering tools. At the core of most of these tools, a significant portion of execution time is spent in determining optimal local alignment between two sequences. This task is performed with the Smith-Waterman algorithm, which is a dynamic programming based method. With the advent of modern sequencing technologies and increasing size of both genome and protein databases, a need for faster Smith-Waterman implementations has emerged. Multiple SIMD strategies for the Smith-Waterman algorithm are available for CPUs. However, with the move of HPC facilities towards accelerator based architectures, a need for an efficient GPU accelerated strategy has emerged. Existing GPU based strategies have either been optimized for a specific type of characters (Nucleotides or Amino Acids) or for only a handful of application use-cases. Results In this paper, we present ADEPT, a new sequence alignment strategy for GPU architectures that is domain independent, supporting alignment of sequences from both genomes and proteins. Our proposed strategy uses GPU specific optimizations that do not rely on the nature of sequence. We demonstrate the feasibility of this strategy by implementing the Smith-Waterman algorithm and comparing it to similar CPU strategies as well as the fastest known GPU methods for each domain. ADEPT’s driver enables it to scale across multiple GPUs and allows easy integration into software pipelines which utilize large scale computational systems. We have shown that the ADEPT based Smith-Waterman algorithm demonstrates a peak performance of 360 GCUPS and 497 GCUPs for protein based and DNA based datasets respectively on a single GPU node (8 GPUs) of the Cori Supercomputer. Overall ADEPT shows 10x faster performance in a node-to-node comparison against a corresponding SIMD CPU implementation. Conclusions ADEPT demonstrates a performance that is either comparable or better than existing GPU strategies. We demonstrated the efficacy of ADEPT in supporting existing bionformatics software pipelines by integrating ADEPT in MetaHipMer a high-performance denovo metagenome assembler and PASTIS a high-performance protein similarity graph construction pipeline. Our results show 10% and 30% boost of performance in MetaHipMer and PASTIS respectively.
Mass Spectrometry (MS)-based proteomics has become an essential tool in the study of proteins. With the advent of modern MS machines huge amounts of data is being generated, which can only be processed by novel algorithmic tools. However, in the absence of data benchmarks and ground truth datasets algorithmic integrity testing and reproducibility is a challenging problem. To this end, MaSS-Simulator has been presented, which is an easy to use simulator and can be configured to simulate MS/MS datasets for a wide variety of conditions with known ground truths. MaSS-Simulator offers many configuration options to allow the user a great degree of control over the test datasets, which can enable rigorous and large- scale testing of any proteomics algorithm. MaSS-Simulator is assessed by comparing its performance against experimentally generated spectra and spectra obtained from NIST collections of spectral library. The results show that MaSS-Simulator generated spectra match closely with real-spectra and have a relative-error distribution centered around 25%. In contrast, the theoretical spectra for same peptides have relative-error distribution centered around 150%. MaSS-Simulator will enable developers to specifically highlight the capabilities of their algorithms and provide a strong proof of any pitfalls they might face. Source code, executables, and a user manual for MaSS-Simulator can be downloaded from https://github.com/pcdslab/MaSS-Simulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.