In this work, the nabla discrete new Riemann–Liouville and Caputo fractional proportional differences of order 0<ε<1 on the time scale ℤ are formulated. The differences and summations of discrete fractional proportional are detected on ℤ, and the fractional proportional sums associated to ∇cRχε,ρz with order 0<ε<1 are defined. The relation between nabla Riemann–Liouville and Caputo fractional proportional differences is derived. The monotonicity results for the nabla Caputo fractional proportional difference are proved; specifically, if ∇c−1Rχε,ρz>0 then χz is ερ −increasing, and if χz is strictly increasing on ℕc and χc>0, then ∇c−1Rχε,ρz>0. As an application of our findings, a new version of the fractional proportional difference of the mean value theorem (MVT) on ℤ is proved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.