This study evaluates the functional capacity of CD4+ and CD8+ terminally-differentiated effector (TEMRA), central memory (TCM), and effector memory (TEM) cells obtained from the volunteers vaccinated with an aluminum-adjuvanted inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac). The volunteers were followed for T cell immune responses following the termination of a randomized phase III clinical trial. Seven days and four months after the second dose of the vaccine, the memory T cell subsets were collected and stimulated by autologous monocyte-derived dendritic cells (mDCs) loaded with SARS-CoV-2 spike glycoprotein S1. Compared to the placebo group, memory T cells from the vaccinated individuals significantly proliferated in response to S1-loaded mDCs. CD4+ and CD8+ memory T cell proliferation was detected in 86% and 78% of the vaccinated individuals, respectively. More than 73% (after a short-term) and 62% (after an intermediate-term) of the vaccinated individuals harbored TCM and/or TEM cells that responded to S1-loaded mDCs by secreting IFN-γ. The expression of CD25, CD38, 4-1BB, PD-1, and CD107a indicated a modulation in the memory T cell subsets. Especially on day 120, PD-1 was upregulated on CD4+ TEMRA and TCM, and on CD8+ TEM and TCM cells; accordingly, proliferation and IFN-γ secretion capacities tended to decline after 4 months. In conclusion, the combination of inactivated whole-virion particles with aluminum adjuvants possesses capacities to induce functional T cell responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.