The COVID-19 diagnostic approach is mainly divided into two broad categories, a laboratory-based and chest radiography approach. The last few months have witnessed a rapid increase in the number of studies use artificial intelligence (AI) techniques to diagnose COVID-19 with chest computed tomography (CT). In this study, we review the diagnosis of COVID-19 by using chest CT toward AI. We searched ArXiv, MedRxiv, and Google Scholar using the terms “deep learning”, “neural networks”, “COVID-19”, and “chest CT”. At the time of writing (August 24, 2020), there have been nearly 100 studies and 30 studies among them were selected for this review. We categorized the studies based on the classification tasks: COVID-19/normal, COVID-19/non-COVID-19, COVID-19/non-COVID-19 pneumonia, and severity. The sensitivity, specificity, precision, accuracy, area under the curve, and F1 score results were reported as high as 100%, 100%, 99.62, 99.87%, 100%, and 99.5%, respectively. However, the presented results should be carefully compared due to the different degrees of difficulty of different classification tasks.
On average, breast cancer kills one woman per minute. However, there are more reasons for optimism than ever before. When diagnosed early, patients with breast cancer have a better chance of survival. This study aims to employ a novel approach that combines artificial intelligence and a multi-criteria decision-making method for a more robust evaluation of machine learning models. The proposed machine learning techniques comprise various supervised learning algorithms, while the multi-criteria decision-making technique implemented includes the Preference Ranking Organization Method for Enrichment Evaluations. The Support Vector Machine, having achieved a net outranking flow of 0.1022, is ranked as the most favorable model for the early detection of breast cancer. The net outranking flow is the balance between the positive and negative outranking flows. This indicates that the higher the net flow, the better the alternative. K-nearest neighbor, logistic regression, and random forest classifier ranked second, third, and fourth, with net flows of 0.0316, −0.0032, and −0.0541, respectively. The least preferred alternative is the naive Bayes classifier with a net flow of −0.0766. The results obtained in this study indicate the use of the proposed method in making a desirable decision when selecting the most appropriate machine learning model. This gives the decision-maker the option of introducing new criteria into the decision-making process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.