<abstract><p>In this study, we attempt to obtain the approximate solution for the time-space fractional linear and nonlinear diffusion equations. A finite difference approach is given for the solution of both linear and nonlinear fractional order diffusion problems. The Riesz fractional derivative in space is specifically approximated using the centered difference scheme. A system of Atangana-Baleanu Caputo equations that have been converted through spatial discretization is solved using a newly developed modified Simpson's 1/3 formula. A study of the proposed scheme is done to ascertain its stability and convergence. It has been shown that for mesh size h and time steps $ \delta t $ the recommended method converges at a rate of $ O(\delta t^2 + h^2) $. Based on graphic results and numerical examples, the application of the model is also examined.</p></abstract>
This work is aimed at presenting a new numerical scheme for COVID-19 epidemic model based on Atangana-Baleanu fractional order derivative in Caputo sense (ABC) to investigate the vaccine efficiency. Our construction of the model is based on the classical SEIR, four compartmental models with an additional compartment V of vaccinated people extending it SEIRV model, for the transmission as well as an effort to cure this infectious disease. The point of disease-free equilibrium is calculated, and the stability analysis of the equilibrium point using the reproduction number is performed. The endemic equilibrium’s existence and uniqueness are investigated. For the solution of the nonlinear system presented in the model at different fractional orders, a new numerical scheme based on modified Simpson’s 1/3 method is developed. Convergence and stability of the numerical scheme are thoroughly analyzed. We attempted to develop an epidemiological model presenting the COVID-19 dynamics in Italy. The proposed model’s dynamics are graphically interpreted to observe the effect of vaccination by altering the vaccination rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.