One of the main concerns for online shopping websites is to provide efficient and customized recommendations to a very large number of users based on their preferences. Collaborative filtering (CF) is the most famous type of recommender system method to provide personalized recommendations to users. CF generates recommendations by identifying clusters of similar users or items from the user-item rating matrix. This cluster of similar users or items is generally identified by using some similarity measurement method. Among numerous proposed similarity measure methods by researchers, the Pearson correlation coefficient (PCC) is a commonly used similarity measure method for CF-based recommender systems. The standard PCC suffers some inherent limitations and ignores user rating preference behavior (RPB). Typically, users have different RPB, where some users may give the same rating to various items without liking the items and some users may tend to give average rating albeit liking the items. Traditional similarity measure methods (including PCC) do not consider this rating pattern of users. In this article, we present a novel similarity measure method to consider user RPB while calculating similarity among users. The proposed similarity measure method state user RPB as a function of user average rating value, and variance or standard deviation. The user RPB is then combined with an improved model of standard PCC to form an improved similarity measure method for CF-based recommender systems. The proposed similarity measure is named as improved PCC weighted with RPB (IPWR). The qualitative and quantitative analysis of the IPWR similarity measure method is performed using five state-of-the-art datasets (i.e. Epinions, MovieLens-100K, MovieLens-1M, CiaoDVD, and MovieTweetings). The IPWR similarity measure method performs better than state-of-the-art similarity measure methods in terms of mean absolute error (MAE), root mean square error (RMSE), precision, recall, and F-measure.
Collaborative filtering (CF) is the most commonly used technique for online recommendations. CF works by computing the interests of a user by gathering preferences or taste information of other users. In this technique, similar users or items are discovered by exploring the user-item rating matrix. Based on the computed similarity, a prediction is made for the unknown or new product. There are many similarity computation methods, such as the Pearson correlation coefficient (PCC), Jaccard, Mean square difference, Cosine, etc. however, the accuracy of product recommendations using these methods is not very promising. This work introduces an improved product recommendation method for collaborative filtering, which is based on the triangle similarity. However, the downside of triangle similarity is that it only considers the common ratings of users. The proposed similarity measure not only focuses on common ratings but also consider the ratings of those items that are not commonly rated from pairs of users. The obtained similarity is further complemented with the user rating preference (URP) behavior in giving rating preferences. To evaluate the accuracy, experiments are performed on the six commonly used datasets in the field of CF. Experimental results prove that the proposed similarity measure performs well as compared to the existing similarity measures. INDEX TERMS Collaborative filtering, recommender systems, triangle similarity, user preferences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.