OBJECTIVE All available treatments directed towards obesity and obesity-related complications are associated with suboptimal effectiveness/invasiveness ratios. Pharmacological, behavioral and lifestyle modification treatments are the least invasive, but also the least effective options, leading to modest weight loss that is difficult to maintain long-term. Gastrointestinal weight loss surgery (GIWLS) is the most effective, leading to >60–70% of excess body weight loss, but also the most invasive treatment available. Sleeve gastrectomy (SGx) and Roux-en-Y gastric bypass (RYGB) are the two most commonly performed GIWLS procedures. The fundamental anatomic difference between SGx and RYGB is that in the former procedure, only the anatomy of the stomach is altered, without surgical reconfiguration of the intestine. Therefore, comparing these two operations provides a unique opportunity to study the ways that different parts of the gastrointestinal (GI) tract contribute to the regulation of physiological processes, such as the regulation of body weight, food intake and metabolism. DESIGN To explore the physiologic mechanisms of the two procedures, we used rodent models of SGx and RYGB to study the effects of these procedures on body weight, food intake and metabolic function. RESULTS Both SGx and RYGB induced a significant weight loss that was sustained over the entire study period. SGx-induced weight loss was slightly lower compared with that observed after RYGB. SGx-induced weight loss primarily resulted from a substantial decrease in food intake and a small increase in locomotor activity. In contrast, rats that underwent RYGB exhibited a substantial increase in non-activity-related (resting) energy expenditure and a modest decrease in nutrient absorption. Additionally, while SGx-treated animals retained their preoperative food preferences, RYGB-treated rats experienced a significant alteration in their food preferences. CONCLUSIONS These results indicate a fundamental difference in the mechanisms of weight loss between SGx and RYGB, suggesting that the manipulation of different parts of the GI tract may lead to different physiologic effects. Understanding the differences in the physiologic mechanisms of action of these effective treatment options could help us develop less invasive new treatments against obesity and obesity-related complications.
The present study was performed to investigate whether the chronic administration of antioxidant vitamin C provided morphological protection on cisplatin-induced renal damage. Wistar albino male rats were divided into control and two experiment groups, each consisting of six rats. Cisplatin (5 mg/kg/ month) was administered intravenously to the second and third group for three months. After the first application of cisplatin, vitamin C (8 mg/kg/day) to the third group was administered intramuscular for 3 months. At the end of the third month, the kidney specimens of the all groups were obtained. All of these kidney specimens were processed for light and electron microscopical examination. In the second group, most of the renal corpuscle lost their normal appearance and size, especially in the corticomedullary region. The most obvious changes were encountered in the proximal tubules. These changes were tubular dilation, thickening of basement membrane, loss of brush border, vacuolization, and swollenness of mitochondria in the proximal tubule epithelial cells. In addition, infiltration foci were observed mainly in the cortical region. In the third group, which was administered cisplatin plus vitamin C, although the structural damages and morphometric changes were lessened, mononuclear cell infiltration was still observed. This study suggests that the chronic administration of vitamin C may be of therapeutic benefit on cisplatin nephrotoxicity.
Drug-drug-interactions (DDIs) occur when a drug alters the metabolic rate, efficacy, and toxicity of concurrently used drugs. While almost 1 in 4 adults now use at least 3 concurrent prescription drugs in the United States, the Non-alcoholic fatty liver disease (NAFLD) prevalence has also risen over 25%. The effect of NALFD on DDIs is largely unknown. NAFLD is characterized by lipid vesicle accumulation in the liver, which can progress to severe steatohepatitis (NASH), fibrosis, cirrhosis, and hepatic carcinoma. The CYP450 enzyme family dysregulation in NAFLD, which might already alter the efficacy and toxicity of drugs, has been partially characterized. Nevertheless, the drug-induced dysregulation of CYP450 enzymes has not been studied in the fatty liver. These changes in enzymatic inducibility during NAFLD, when taking concurrent drugs, could cause unexpected fatalities through inadvertent DDIs. We have, thus, developed an in vitro model to investigate the CYP450 transcriptional regulation in NAFLD. Specifically, we cultured primary human hepatocytes in a medium containing free fatty acids, high glucose, and insulin for seven days. These cultures displayed intracellular macro-steatosis after 5 days and cytokine secretion resembling NAFLD patients. We further verified the model’s dysregulation in the transcription of key CYP450 enzymes. We then exposed the NAFLD model to the drug inducers rifampicin, Omeprazole, and Phenytoin as activators of transcription factors pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR) and constitutive androstane receptor (CAR), respectively. In the NAFLD model, Omeprazole maintained an expected induction of CYP1A1, however Phenytoin and Rifampicin showed elevated induction of CYP2B6 and CYP2C9 compared to healthy cultures. We, thus, conclude that the fatty liver could cause aggravated drug-drug interactions in NAFLD or NASH patients related to CYP2B6 and CYP2C9 enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.