We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.
We report a facile and large-scale solution fabrication of cuprous oxide (Cu2O) nanowires/nanorods and 3D porous Cu2O networks and their application as photocathodes for efficient solar water splitting. The growth mechanism and structural characterization of 3D porous Cu2O networks are studied in detail. The photocathodic performance of Cu2O electrodes prepared under different growth conditions is investigated in a pH-neutral medium. The porous Cu2O network photocathodes exhibit large photocurrent, high spectral photoresponse, and incident photon-to-current efficiency compared with Cu2O nanowire/nanorod photoelectrodes. The photoelectrochemical stability of the 3D Cu2O network is significantly improved by applying multi-layer metal oxide protection.
We fabricated GaN light-emitting diodes with a layer of graphene as a transparent electrode. A 3-nm-thick Al layer was deposited on the graphene layer by electron-beam evaporation. This Al layer plays an important role in protecting the graphene layer during the device fabrication process. Moreover, this Al layer can also enhance the light emission of GaN light-emitting diodes through the investigation of electroluminescence spectra. The significantly improved light emission is attributed to the current expansion, the enhanced plasmonic density of states, and the decreased nonradiative recombination rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.