The main purpose of this work is to describe all the zero-centered solutions of the second order linear singular differential equation with Dirac delta function (or it derivatives of some order) in the second right hand side in the space K'. All the coefficients and the exponents of the polynomials under the unknown function and it derivatives up to second order respectively, are real and natural numbers in the considered equation. We conduct investigations for both the euler case and left euler case situations of this equation, when it is fulfilled some particular conditions in the relationships between the parameters A, B, C, m, n and r. In each of these cases, we look for the zero-centered solutions and substitute the form of the particular solution into the equation. We then after, determinate the unknown coefficients and formulate the related theorems to describe all the solutions depending of the cases to be investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.