The Bag-of-Visual-Words (BoVW) model is widely used for image classification, object recognition and image retrieval problems. In BoVW model, the local features are quantized and 2-D image space is represented in the form of order-less histogram of visual words. The image classification performance suffers due to the order-less representation of image. This paper presents a novel image representation that incorporates the spatial information to the inverted index of BoVW model. The spatial information is added by calculating the global relative spatial orientation of visual words in a rotation invariant manner. For this, we computed the geometric relationship between triplets of identical visual words by calculating an orthogonal vector relative to each point in the triplets of identical visual words. The histogram of visual words is calculated on the basis of the magnitude of these orthogonal vectors. This calculation provides the unique information regarding the relative position of visual words when they are collinear. The proposed image representation is evaluated by using four standard image benchmarks. The experimental results and quantitative comparisons demonstrate that the proposed image representation outperforms the existing state-of-the-art in terms of classification accuracy.
Due to recent development in technology, the complexity of multimedia is significantly increased and the retrieval of similar multimedia content is a open research problem. Content-Based Image Retrieval (CBIR) is a process that provides a framework for image search and low-level visual features are commonly used to retrieve the images from the image database. The basic requirement in any image retrieval process is to sort the images with a close similarity in term of visually appearance. The color, shape and texture are the examples of low-level image features. The feature plays a significant role in image processing. The powerful representation of an image is known as feature vector and feature extraction techniques are applied to get features that will be useful in classifying and recognition of images. As features define the behavior of an image, they show its place in terms of storage taken, efficiency in classification and obviously in time consumption also. In this paper, we are going to discuss various types of features, feature extraction techniques and explaining in what scenario, which features extraction technique will be better. The effectiveness of the CBIR approach is fundamentally based on feature extraction. In image processing errands like object recognition and image retrieval feature descriptor is an immense among the most essential step. The main idea of CBIR is that it can search related images to an image passed as query from a dataset got by using distance metrics. The proposed method is explained for image retrieval constructed on YCbCr color with canny edge histogram and discrete wavelet transform. The combination of edge of histogram and discrete wavelet transform increase the performance of image retrieval framework for content based search. The execution of different wavelets is additionally contrasted with discover the suitability of specific wavelet work for image retrieval. The proposed algorithm is prepared and tried to implement for Wang image database. For Image Retrieval Purpose, Artificial Neural Networks (ANN) is used and applied on standard dataset in CBIR domain. The execution of the recommended descriptors is assessed by computing both Precision and Recall values and compared with different other proposed methods with demonstrate the predominance of our method. The efficiency and effectiveness of the proposed approach outperforms the existing research in term of average precision and recall values.
As digital images play a vital role in multimedia content, the automatic classification of images is an open research problem. The Bag of Visual Words (BoVW) model is used for image classification, retrieval and object recognition problems. In the BoVW model, a histogram of visual words is computed without considering the spatial layout of the 2-D image space. The performance of BoVW suffers due to a lack of information about spatial details of an image. Spatial Pyramid Matching (SPM) is a popular technique that computes the spatial layout of the 2-D image space. However, SPM is not rotation-invariant and does not allow a change in pose and view point, and it represents the image in a very high dimensional space. In this paper, the spatial contents of an image are added and the rotations are dealt with efficiently, as compared to approaches that incorporate spatial contents. The spatial information is added by constructing the histogram of circles, while rotations are dealt with by using concentric circles. A weighed scheme is applied to represent the image in the form of a histogram of visual words. Extensive evaluation of benchmark datasets and the comparison with recent classification models demonstrate the effectiveness of the proposed approach. The proposed representation outperforms the state-of-the-art methods in terms of classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.