Metal-organic frameworks (MOFs) are an intriguing class of porous inorganic-organic hybrid networks synthesized from metal ions with multidentate organic ligands. MOFs have uniform and tunable cavities and tailorable chemistry, making them promising materials for hazardous component removal from the environment. Controllable integration of magnetic nanoparticles (NPs) and MOFs is leading to the creation of many novel multifunctional MOF-based composites, which exhibit advanced performance that is superior to both of the individual units. This review summarizes the recent significant advances in the development of MOF-based magnetic heterostructure materials for the removal of hazardous contaminants from the environment. The successful methods reported till date for the magnetic MOF synthesis are also provided. In the final section, we provide our views on the future development of the magnetic MOF heterostructure materials for the pollution management.
A major proportion of women exhibited symptoms of antenatal composite DAS, and various factors were found to be related to their psychological distress. A young maternal age, low husband support, low income, large family size, adverse life events, lack of confidence, pregnancy-related concerns, and domestic violence were stronger determinants of poor antenatal psychological status. The study findings concluded that policymakers at the government level should launch special intervention programs to improve maternal perinatal mental and psychological health at the community level.
In nanotechnology, fungal mediated green synthesis of silver nanoparticles (AgNPs) has tremendous application in the development of antimicrobial systems but the mechanism behind the synthesis is yet to be understood. This study aims to synthesize the silver nanoparticles via a green chemistry route using mycellial aqueous extract of agriculturally beneficial fungi Trichoderma harzianum. Two different concentrations (1 mM and 2.5 Mm) of aqueous silver salt (AgNO3) were used and mixed as 1:1 ratio with aqueous extract of T. harzianum at room temperature and the pH of the reaction mixture was monitored until it stabilized. Formation of AgNPs was confirmed by using UV-Vis spectroscopic analysis. For further insight, AgNPs were characterized by using HR-TEM and XRD, which clearly showed appearance of crystalline, monodispersed round-shaped particles of 3-20 nm in size. The synthesised NPs were subjected to antimicrobial assay against gram +ve and gram –ve bacteria using the disk diffusion method. The focused species was Clavibactermichiganensis subsp michiganensis, which is the causitive pathogen of Tomato canker disease and we hypothesised that the synthesised AgNPs might be useful to control this pathogen. Appreciable antibiotic activity was monitored even at a low concentration of 1mM level, while the zone of inhibition was positively increased at 2.5 mM. Our results clearly indicate that the present process is an excellent candidate for industrial scale production of AgNPs, and has the potential to control the bacterial pathogen cmm.
The studies of metal oxides in environmental remediation of chemical and biological pollutants are gaining colossal importance. Herein, we report the facile synthesis of multifunctional copper oxide nanosheets (CuO NS) using an aqueous extract of Rhazya stricta. The phytochemical investigation of R. stricta indicated the presence of saponins, tannins, and reducing sugars, responsible for the reduction and stabilization of CuO NS. A UV–Visible spectrophotometer initially confirmed the fabrication of CuO NS with specific Surface Plasmon Resonance at 294 nm. Field Emission Scanning Electron Microscopy (FE-SEM), Fourier-transform infrared spectroscopy FTIR, and XRD were further used to characterize the CuO NS. The obtained CuO NS were poly-dispersed with an average size of 20 nm. Interestingly these particles were aligned together in 3D cubical sheets layered above each other via self-assembly. The as-synthesized CuO NS showed enhanced antibacterial potential (17.63 mm, overall mean inhibition zone) in comparison to the known antibiotics (11.51 mm, overall mean inhibition zone) against both Solanaceous crop's wilt-causing bacteria (Ralstonia solanacearum and Clavibacter michiganensis). Furthermore, the appreciable photocatalytic potential of CuO NS has also been observed, causing 83% degradation of methylene blue (MB) upon solar irradiation. The synthesis methodology is devoid of any toxic waste or by-products. It could be used to produce eco-friendly CuO nanomaterial for industrial uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.