Microscopic detail of complex vehicle interactions in mixed traffic, involving manual driving system (MDS) and automated driving system (ADS), is imperative in determining the extent of response by ADS vehicles in the connected automated vehicle (CAV) environment. In this context, this paper proposes a naïve microscopic car-following strategy for a mixed traffic stream in CAV settings and specified shifts in traffic mobility, safety, and environmental features. Additionally, this study explores the influences of platoon properties (i.e., intra-platoon headway, inter-platoon headway, and maximum platoon length) on traffic stream characteristics. Different combinations of MDS and ADS vehicles are simulated in order to understand the variations of improvements induced by ADS vehicles in a traffic stream. Simulation results reveal that grouping ADS vehicles at the front of traffic stream to apply Cooperative Adaptive Cruise Control (CACC) based car-following model will generate maximum mobility benefits for upstream vehicles. Both mobility and environmental improvements can be realized by forming long, closely spaced ADS vehicles at the cost of reduced safety. To achieve balanced mobility, safety, and environmental advantages from mixed traffic environment, dynamically optimized platoon configurations should be determined at varying traffic conditions and ADS market penetrations.
Although connected vehicle (CV)-based signal coordination has some proposed prototypes and has been investigated by several different strategies, the existing works have issues that require attention, including additional CV-based system uncertainties and platoon priority request considerations. Thus, a generalized framework consisting of a platoon-based bicyclic coordination diagram (Bi-PCD), a new probabilistic surrogate quantification, and a platoon priority-based offset optimization in the CV environment is proposed to improve the coordination performance. The proposed Bi-PCD extends the scope of the current Purdue coordination diagram (PCD) and its variants by covering extra practical and emerged variables. A prototype and field tests in a CV test pilot for general scenarios were implemented in a typical arterial road to verify performances of the proposed Bi-PCD and the offset optimization method. Field results demonstrated that using Bi-PCD could obtain explicit platoon features in both limited and full CV penetration conditions. The comprehensive analysis showed that the proposed Bi-PCD and the platoon priority-based offset optimization could further improve performances of the signal coordination.
Variable speed limit (VSL) is becoming recognized as an effective way to improve traffic throughput and road safety. In particular, methods based on traffic state prediction exhibit promising potential to prevent future traffic congestion and collisions. However, field observations indicate that the traffic state prediction model results in nonnegligible error that impacts the next step decision making of VSL. Thus, this paper investigates how to eliminate this prediction error within a VSL environment. In this study, the traffic state prediction model is a second-order traffic flow model named METANET, while the VSL control is model predictive control (MPC) based, and the VSL decision is discrete optimized choice. A simplified version of the switching mode stochastic cell transmission model (SCTM) is integrated with the METANET model to eliminate the prediction error. The performance of the proposed method is assessed using field data from a VSL pilot test in Edmonton, Canada, and is compared with the prediction results of the baseline METANET model during the road test. The results show that during the most congested period the proposed SCTM-METANET model significantly improves the prediction accuracy of regular METANET model.
Weaving sections are components of highway networks that introduce a heightened likelihood for bottlenecks and collisions. Automated vehicle technology could address this as it holds considerable promise for transportation mobility and safety improvements. However, the implications of combining automated vehicles (AuVs) with traditional human-driven vehicles (HuVs) in weaving freeway sections have not been quantitatively measured. To address this gap, this paper objectively experimented with bidirectional (i.e., longitudinal and lateral) motion dynamics in a microscopic modeling framework to measure the mobility and safety implications for mixed traffic movement in a freeway weaving section. Our research begins by establishing a multilane microscopic model for studied vehicle types (i.e., AuV and HuV) from model predictive control with the provision to form a CACC platoon of AuV vehicles. The proposed modeling framework was tested first with HuV only on a two-lane weaving section and validated using standardized macroscopic parameters from the Highway Capacity Manual. This model was then applied to incrementally expand the AuV share for varying inflow rates of traffic. Simulation results showed that the maximum flow rate through the weaving section was attained at a 65% AuV share. At the same time, steadiness in the average speed of traffic was experienced with increasing AuV share. The results also revealed that a 95% AuV share could reduce potential conflicts by 94.28%. Finally, the results of simulated scenarios were consolidated and scaled to report expected mobility and safety outcomes from the prevailing traffic state and the optimal AuV share for the current inflow rate in weaving sections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.