Currently, available treatment for osteosarcoma is combinational chemotherapy of doxorubicin, cisplatin, and methotrexate before and after surgery with overall 5‐year survival rate of less than 40%. The present study was aimed to assess the anticancer effects of a phytochemical named β‐caryophyllene (BCP) in treating osteosarcoma. We assessed the effect of (BCP) on oxidative stress, proliferation, apoptosis, and inflammation in human bone cancer cells MG‐63. Our results showed that BCP induced reactive oxygen species (ROS) generation at 20 µM concentration in MG‐63 cells. The same dose was also shown to exhibit proapoptotic and antiproliferative effects in bone cancer cells MG‐63. We demonstrated that the treatment of MG‐63 cells with BCP prompted mitochondrial apoptosis via upregulation of Bax and caspase‐3 and downregulation of Bcl‐2 as well as prompted mitochondrial membrane potential. Our results also showed stimulation of Janus kinase 1/signal transducer and activator of transcription 3 (JAK1/STAT3) signaling pathway in bone cancer MG‐63 cells upon BCP treatment along with the induction of proinflammatory genes at the messenger RNA level. Overall results suggest that the treatment of MG‐63 cells with BCP promotes apoptosis and inflammation via ROS and JAK1/STAT3 signaling pathway.
In pursuit of the significant contribution of copper ion in different biological processes, this research work describes the synthesis, X-ray structure, Hirshfeld surface analysis, oxidative dimerization of 2-aminophenol and antibacterial activity of a newly designed copper (II)-Schiff base complex, [Cu(L) 2 ] (1), [Schiff base (HL) = 2-(2-methoxybenzylideneamino)phenol]. X-ray structural analysis of 1 reveals that the Cu (II) complex crystallizes in a cubic crystal system with Ia-3d space group. The Cu (II) centre adopts an unprecedented tetragonal bipyramidal geometry in its crystalline phase. The Schiff base behaves as a tridentate chelator and forms an innermetallic chelate of first order with Cu (II) ion. The copper (II) complex has been tested in the bio-mimics of phenaxozinone synthase activity in acetonitrile and exhibits good catalytic activity as evident from high turnover number, 536.4 h −1. Electrochemical analysis exhibits the appearance of two additional peaks at −0.15 and 0.46 V for Cu (II) complex in presence of 2-AP and suggests the development of AP − /AP •− and AP •− /IQ redox couples in solution, respectively. The presence of iminobenzosemiquinone radical at g = 2.057 in the reaction mixture was confirmed by electron paramagnetic resonance and may be considered the driving force for the oxidative dimerisation of 2-AP. The existence of a peak at m/z 624.81 for Cu (II) complex in presence of 2-AP in electrospray ionization mass spectrum ensures that the catalytic oxidation proceeds through enzyme-substrate adduct formation. The copper (II) complex exhibits potential antibacterial properties against few pathogenic bacterial species like Staphylococcus aureus, Enterococcus and Klebsiella pneumonia and scanning electron microscope studies consolidates that destruction of bacterial cell membrane accounts on the development of antibacterial activity. Shreya Mahato and Nishith Meheta have equal contribution.
Phenazine scaffolds are the versatile secondary metabolites of bacterial origin. It functions in the biological control of plant pathogens and contributes to the producing strains ecological fitness and pathogenicity. In the light of the excellent therapeutic properties of phenazine, we have synthesized a hydrated 2,3-diaminophenazinium chloride (DAPH+Cl−·3H2O) through direct catalytic oxidation of o-phenylenediamine with an iron(III) complex, [Fe(1,10-phenanthroline)2Cl2]NO3 in ethanol under aerobic condition. The crystal structure, molecular complexity and supramolecular aspects of DAPH+Cl− were confirmed and elucidated with different spectroscopic methods and single crystal X-ray structural analysis. Crystal engineering study on DAPH+Cl− exhibits a fascinating formation of (H2O)2…Cl−…(H2O) cluster and energy framework analysis of defines the role of chloride ions in the stabilization of DAPH+Cl−. The bactericidal efficiency of the compound has been testified against few clinical bacteria like Streptococcus pneumoniae, Escherichia coli, K. pneumoniae using the disc diffusion method and the results of high inhibition zone suggest its excellent antibacterial properties. The phenazinium chloride exhibits a significant percentage of cell viability and a considerable inhibition property against SARS-CoV-2 at non-cytotoxic concentration compared to remdesivir. Molecular docking studies estimate a good binding propensity of DAPH+Cl− with non-structural proteins (nsp2 and nsp7-nsp-8) and the main protease (Mpro) of SARS-CoV-2. The molecular dynamics simulation studies attribute the conformationally stable structures of the DAPH+Cl− bound Mpro and nsp2, nsp7-nsp8 complexes as evident from the considerable binding energy values, − 19.2 ± 0.3, − 25.7 ± 0.1, and − 24.5 ± 0.7 kcal/mol, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.