Distributed Energy Storage Systems are considered key enablers in the transition from the traditional centralized power system to a smarter, autonomous, and decentralized system operating mostly on renewable energy. The control of distributed energy storage involves the coordinated management of many smaller energy storages, typically embedded within microgrids. As such, there has been much recent interest related to controlling aspects of supporting power-sharing balance and sustainability, increasing system resilience and reliability, and balancing distributed state of charge. This paper presents a comprehensive review of decentralized, centralized, multiagent, and intelligent control strategies that have been proposed to control and manage distributed energy storage. It also highlights the potential range of services that can be provided by these storages, their control complications, and proposed solutions. Specific focus on control strategies based upon multiagent communication and reinforcement learning is a main objective of this paper, reflecting recent advancements in digitalization and AI. The paper concludes with a summary of emerging areas and presents a summary of promising future directions.
Intelligent energy management in renewable-based power distribution applications, such as microgrids, smart grids, smart buildings, and EV systems, is becoming increasingly important in the context of the transition toward the decentralization, digitalization, and decarbonization of energy networks. Arguably, many challenges can be overcome, and benefits leveraged, in this transition by the adoption of intelligent autonomous computer-based decision-making through the introduction of smart technologies, specifically artificial intelligence. Unlike other numerical or soft computing optimization methods, the control based on artificial intelligence allows the decentralized power units to collaborate in making the best decision of fulfilling the administrator’s needs, rather than only a primitive decentralization based only on the division of tasks. Among the smart approaches, reinforcement learning stands as the most relevant and successful, particularly in power distribution management applications. The reason is it does not need an accurate model for attaining an optimized solution regarding the interaction with the environment. Accordingly, there is an ongoing need to accomplish a clear, up-to-date, vision of the development level, especially with the lack of recent comprehensive detailed reviews of this vitally important research field. Therefore, this paper fulfills the need and presents a comprehensive review of the state-of-the-art successful and distinguished intelligent control strategies-based RL in optimizing the management of power flow and distribution. Wherein extensive importance is given to the classification of the literature on emerging strategies, the proposals based on RL multiagent, and the multiagent primary secondary control of managing power flow in micro and smart grids, particularly the energy storage. As a result, 126 of the most relevant, recent, and non-incremental have been reviewed and put into relevant categories. Furthermore, salient features have been identified of the major positive and negative, of each selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.