Two batches of native whey proteins (WP) were subjected to microfluidization or heat denaturation accompanied by microfluidization, followed by spray drying. Powders were assessed for their solubility, heat stability, coagulation time, and emulsifying and foaming properties. Effects of denaturation and shearing were examined by particle size analysis, differential scanning calorimetry, reducing and nonreducing sodium dodecyl sulfate-PAGE, and size exclusion-HPLC. Heat treatment significantly decreased solubility, whereas the number of microfluidization passes markedly improved solubility. The combined effect of heat and pressure significantly increased heat coagulation time. Emulsifying activity index substantially increased upon heat denaturation and was further enhanced by microfluidization. Emulsion stability appeared unaffected by the combined treatment, but the concentration of adsorbed protein on fat droplets was significantly increased. Foaming properties were diminished by heating. Particle size distribution patterns, sodium dodecyl sulfate-PAGE, and size exclusion-HPLC revealed disappearance of major WP and creation of relatively higher, as well as smaller, molecular weight aggregates as a result of the 2 treatments. The use of heat and microfluidization in combination could be used to stabilize WP against heat by producing microparticulated species that have different surface and colloidal properties compared with native WP. These results have implications for the use of WP as an additive in heat-processed foods.
The main aim of the study was to assess the effect of microparticulation at low pH on the functionality of heat-denatured whey proteins (WP). Spray-dried, microparticulated WP (MWP) powders were produced from 7% (wt/wt) WP dispersions at pH 3, acidified with citric or lactic acid, and microfluidized with or without heat denaturation. Nonmicroparticulated, spray-dried powders produced at neutral pH or pH 3 served as controls. The powders were examined for their functional and physicochemical properties. Denatured MWP had an approximately 2 orders of magnitude reduction in particle size compared with those produced at neutral pH, with high colloidal stability indicated by substantially improved solubility. The detection of monomeric forms of WP in PAGE also confirmed the particle size reduction. Microparticulated WP exhibited enhanced heat stability, as indicated by thermograms, along with better emulsifying properties compared with those produced at neutral pH. However, MWP powders created weaker heat-induced gels at neutral pH compared with controls. However, they created comparatively strong cold acid-set gels. At low pH, a combination of heat and high hydrodynamic pressure produced WP micro-aggregates with improved colloidal stability that affects other functionalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.