Heavy metals, which have widespread environmental distribution and originate from natural and anthropogenic sources, are common environmental pollutants. In recent decades, their contamination has increased dramatically because of continuous discharge in sewage and untreated industrial effluents. Because they are non-degradable, they persist in the environment; accordingly, they have received a great deal of attention owing to their potential health and environmental risks. Although the toxic effects of metals depend on the forms and routes of exposure, interruptions of intracellular homeostasis include damage to lipids, proteins, enzymes and DNA via the production of free radicals. Following exposure to heavy metals, their metabolism and subsequent excretion from the body depends on the presence of antioxidants (glutathione, α-tocopherol, ascorbate, etc.) associated with the quenching of free radicals by suspending the activity of enzymes (catalase, peroxidase, and superoxide dismutase). Therefore, this review was written to provide a deep understanding of the mechanisms involved in eliciting their toxicity in order to highlight the necessity for development of strategies to decrease exposure to these metals, as well as to identify substances that contribute significantly to overcome their hazardous effects within the body of living organisms.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive accumulation of β-amyloid fibrils and abnormal tau proteins in and outside of neurons. Representing a common form of dementia, aggravation of AD with age increases the morbidity rate among the elderly. Although, mutations in the ApoE4 act as potent risk factors for sporadic AD, familial AD arises through malfunctioning of APP, PSEN-1, and−2 genes. AD progresses through accumulation of amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) in brain, which interfere with neuronal communication. Cellular stress that arises through mitochondrial dysfunction, endoplasmic reticulum malfunction, and autophagy contributes significantly to the pathogenesis of AD. With high accuracy in disease diagnostics, Aβ deposition and phosphorylated tau (p-tau) are useful core biomarkers in the cerebrospinal fluid (CSF) of AD patients. Although five drugs are approved for treatment in AD, their failures in achieving complete disease cure has shifted studies toward a series of molecules capable of acting against Aβ and p-tau. Failure of biologics or compounds to cross the blood-brain barrier (BBB) in most cases advocates development of an efficient drug delivery system. Though liposomes and polymeric nanoparticles are widely adopted for drug delivery modules, their use in delivering drugs across the BBB has been overtaken by exosomes, owing to their promising results in reducing disease progression.
Plants being sessile are shaped by evolution to adapt themselves and tolerate various stresses, be it salinity stress, drought, high/low temperature in nature. They have evolved with every alternate strategy to tackle serious abiotic stresses through considerable degree of developmental plasticity, including adaptation via cascades of molecular networks. Understanding the mechanism of genes responsible for plant adaptation to environment will help in predicting the scenarios, expanding the genetic aspect of abiotic stress-regulating genes to protect and extrapolate the level of tolerance or vulnerability conferred in natural ecosystems. Complementing the agronomic need for greater tolerance to abiotic stress, studying plant abiotic stress response can help in gaining insight into plant biology that can be practically applied to unlock the secrets in order to improve plant productivity to feed the ever increasing population of human beings. ARTICLE HISTORY
Despite the vast availability of antibiotics, bacterial infections remain a leading cause of death worldwide. In an effort to enhance the armamentarium against resistant bacterial strains, 1,2,3-triazole (5a–x) and sulfonate (7a–j) analogues of natural bioactive precursors were designed and synthesized. Preliminary screening against two Gram-positive (Streptococcus pneumoniae and Enterococcus faecalis) and four Gram-negative bacterial strains (Pseudomonas aeruginosa, Salmonella enterica, Klebsiella pneumoniae, and Escherichia coli) was performed to assess the potency of these analogues as antibacterial agents. Among all triazole analogues, 5e (derived from carvacrol) and 5u (derived from 2-hydroxy 1,4-naphthoquinone) bearing carboxylic acid functionality emerged as potent antibacterial agents against S. pneumoniae (IC50: 62.53 and 39.33 μg/mL), E. faecalis (IC50: 36.66 and 61.09 μg/mL), and E. coli (IC50: 15.28 and 22.57 μg/mL). Furthermore, 5e and 5u also demonstrated moderate efficacy against multidrug-resistant E. coli strains and were therefore selected for further biological studies. Compound 5e in combination with ciprofloxacin displayed a synergistic effect on multidrug-resistant E. coli MRA11 and MRC17 strains, whereas compound 5u was selective against E. coli MRA11 strain. Growth kinetic studies on S. pneumoniae and E. coli treated with 5e and 5u showed an extended lag phase. 5e and 5u did not show significant cytotoxicity up to 100 μg/mL concentration on human embryonic kidney (HEK293) cells. Transmission electron microscopic (TEM) analysis of bacterial cells (S. pneumoniae and E. coli) exposed to 5e and 5u clearly showed morphological changes and damaged cell walls. Moreover, these compounds also significantly inhibited biofilm formation in S. pneumoniae and E. coli strains, which was visualized by scanning electron microscopic (SEM) analysis. Treatment of larvae of Galleria mellonella (an in vivo model for antimicrobial studies) with 5e and 5u did not cause an alteration in the hemocyte density, thereby indicating lack of an immune response, and were nontoxic up to a concentration of 2.5 mg/mL.
Current study reflects the use of T. arjuna natural dye as an ecofriendly finishing agent for producing highly functional antimicrobial and fluorescent woolen yarn with the evaluation of kinetic and thermodynamic adsorption characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.