The electromyogram (EMG) signals recorded from the surface of skeletal muscles are stochastic in nature and exhibit repeatable patterns for similar muscle activations. Therefore, machine learning algorithms can be used to learn their patterns and identify the movement intent even in the absence of an actual limb. The EMG signals are recorded from the residual muscles/muscle sites after amputation (acquired or congenital) and a representative set of features is extracted. The feature data are passed on to a machine learning algorithm for training and later use in real-time for controlling a prosthetic device. Numerous features of the EMG signal based on its amplitude, spectral contents, and stochastic nature have been proposed. Similarly, various dimensionality reduction techniques, as well as, classification algorithms have also been used. In this study, we provide in-depth analyses of different features of the EMG signals and classification algorithms along with the effect of dimensionality reduction on the classification accuracy. The surface EMG data recorded from the forearm muscles of twelve able-bodied volunteers was used to extract six different feature sets (fourteen individual features). The feature data with/without dimensionality reduction was used to train and test three different classification algorithms, i.e., the linear discriminant analysis (LDA), support vector machines (SVM), and artificial neural networks (ANN). Our extensive study showed that the feature set consisting of the EMG amplitude, spectral, and stochasticity information provided the highest classification accuracy with a linear classifier, i.e., the LDA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.