Rare‐earth‐based high‐entropy alloys (HEAs) with large magnetocaloric effect (MCE) have been recently recognized as good candidates for magnetic refrigeration. Herein, the complex magnetic transition, MCE, refrigerant capacity (RC), and magnetic‐phase diagram of single‐phase TbDyHoEr HEA are studied. It is showed in the results that due to complex magnetic transition and an ideal table‐like MCE, the RC of TbDyHoEr is significantly improved from 883.19 to 1049.22 J kg−1 by melt‐spun treatment. In terms of RC value and hysteresis performance, the melt‐spun treatment significantly improves the application potential of TbDyHoEr HEA as a high‐efficient magnetic refrigeration material, and the ideal table‐like MCE in a large temperature range enables this material to meet the requirements of both cryogenic refrigeration and mesothermal refrigeration for an Ericsson cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.