Wheat is one of the world’s most commonly consumed cereal grains. During abiotic stresses, the physiological and biochemical alterations in the cells reduce growth and development of plants that ultimately decrease the yield of wheat. Therefore, novel approaches are needed for sustainable wheat production under the changing climate to ensure food and nutritional security of the ever-increasing population of the world. There are two ways to alleviate the adverse effects of abiotic stresses in sustainable wheat production. These are (i) development of abiotic stress tolerant wheat cultivars by molecular breeding, speed breeding, genetic engineering, and/or gene editing approaches such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas toolkit, and (ii) application of improved agronomic, nano-based agricultural technology, and other climate-smart agricultural technologies. The development of stress-tolerant wheat cultivars by mobilizing global biodiversity and using molecular breeding, speed breeding, genetic engineering, and/or gene editing approaches such as CRISPR-Cas toolkit is considered the most promising ways for sustainable wheat production in the changing climate in major wheat-growing regions of the world. This comprehensive review updates the adverse effects of major abiotic stresses and discusses the potentials of some novel approaches such as molecular breeding, biotechnology and genetic-engineering, speed breeding, nanotechnology, and improved agronomic practices for sustainable wheat production in the changing climate.
An experiment in alpha lattice design with three replication including 39 exotic maize hybrids was conducted at the Research farm of Regional Agricultural Research Station, BARI, Ishuardi, Pabna during Rabi season 2010-11 for analysis the genetic divergence in exotic maize hybrids. The genotypes were grouped in to seven clusters. Cluster VI comprised the maximum genotypes (13) indicating overall genetic similarity among them. The minimum genotype (1) was contained in the cluster III and V. The highest inter-cluster distance was observed between cluster V and III followed by cluster I and III and cluster III and VII suggesting wide diversity between them and the genotypes in these cluster could be used in hybridization program for obtaining a wide spectrum of variation among the segregates. The highest intra-cluster distance was observed in cluster VII and the cluster III and V were contained only one genotype and hence, their intra cluster distance was zero. The mean values of cluster IV recorded the highest yield per hectare (11.60 ton/ha) with medium plant height, days to maturity, days to 50% tasseling, silking and shelling percentage. Selection on the basis of plant aspect and ear aspect the genotypes of cluster III ranked first but plant height was high with medium seed size, medium yield, medium shelling percentage and also in late in case of maturity. The mean values of cluster V shown overall medium in case of yield and all yield contributing characters. Qualitative characters contribute maximum towards genetic divergence. Therefore, the genotypes from cluster III, V and VI could be utilized as source materials for getting desirable new recombinants with early maturity and higher yield.
Mungbean is one of the most powerful pulses providing substantial protein for human diets and fixing N to the soil, improving nutritional food security and agricultural sustainability. The production of summer mungbean in the tropics and subtropics is adversely affected by drought due to water scarcity caused by various factors as well as lack of rainfall. Irrigation at different growth phases is not a suitable solution. An environmentally friendly and economically viable answer is a convenient irrigation management option that will be available to farmers together with drought-tolerant genotypes. The study considered to determine the effect of differences between drought-tolerant and drought susceptible genotypes on water productivity response and physiological traits in mung beans. To quantify seed yield-related to irrigation at different growth stages eventually to quickly determine the most appropriate irrigation stage. One water stress tolerant mung bean genotype (BMX-08010-2) and one sensitive genotype (BARI Mung-1) were grown in the field with four different irrigation schedules along with water stress conditions (no irrigation) under rain shelter at Regional Agricultural Research Station, BARI, Ishwardi, Pabna, Bangladesh. The experiment was laid out in split plots with three replications, with irrigation schedules assigned in the main plot and mung bean genotypes assigned in the side plots. Water use efficiency ranged from 3.79 to 4.68 kg ha−1 mm−1 depending on irrigation regime, and mung bean seed yield of mung bean Water stress decreased plant water status, photosynthetic pigment and membrane stability index, and increased proline soluble sugar content. Treatments that received irrigation during two or three phases (I3 or I4) gave significantly higher yields than those that received irrigation during only one stage (I1 and I2) with the lowest yield. While the yield obtained ranged between 1145.44 kg ha−1 with seasonal irrigation of 277 mm (I4) and 555.14 kg ha−1 without irrigation (I0). The flowering stage (I3) was recorded as the most sensitive growth stage with an 18.15% yield reduction compared to the treatment with triple irrigation (I4). Also, depending on the irrigation sources, at least two irrigation phases should be provided at the triple leaf stage (I2, i.e., 20 DAS) and at the flowering stage (I3, i.e., 35 DAS) to achieve the highest yield. Genotypes that maintained the higher performance of physicochemical traits under water stress provided higher seed yield and promoted drought tolerance. Therefore, these parameters can be used as physiological and biochemical markers to identify and develop superior genotypes suitable for drought-prone environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.