We characterize structures such as monotonicity, convexity, and modality in smooth regression curves using persistent homology. Persistent homology is a key tool in topological data analysis that detects higher dimensional topological features such as connected components and holes (cycles or loops) in the data. In other words, persistent homology is a multiscale version of homology that characterizes sets based on the connected components and holes. We use super-level sets of functions to extract geometric features via persistent homology. In particular, we explore structures in regression curves via the persistent homology of super-level sets of a function, where the function of interest is -the first derivative of the regression function.In the course of this study, we extend an existing procedure of estimating the persistent homology for the first derivative of a regression function and establish its consistency. Moreover, as an application of the proposed methodology, we demonstrate that the persistent homology 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.